Review of:

Zerkle, Aubrey L., Mark W. Claire, Shawn D. Domagal-Goldman, James Farquhar, and Simon W. Poulton. (2012) A bistable organic-rich atmosphere on the Neoarchean Earth. Nature Geoscience DOI: 10.1038/NGE01425

Primary Question

What was the Earth's atmosphere like prior to the Great Oxidation Event? Did it have an organic haze?

Methods of Addressing this Question

- 1. geochemical proxies from sediment cores
- 2. photochemical models

Why is this important in the larger perspective?

They find that the Earth could have been alternating between two stable states: a haze-free atmosphere and an atmosphere with an organic haze. Understanding the concentrations of organics in the atmosphere constrains the reaction pathways and exit channels that are involved in sulfur MIF.

- Thin Organic Haze CH₄: CO₂ ~0.2
 SOURCE: Opacity of haze lowered the rates of SO₂ photolysis in the lower atmosphere, but SO₂ photolysis still was a likely source of sulfur MIF. In addition, symmetry dependent de-excitation of SO₂ could have also been an important S-MIF source.
 EXIT CHANNELS: SO₂ and other minor channels.

Switching between these two states could explain the slope changes in the Δ ³⁶S/ Δ ³³S.

Weakness

They are not able to explain why rotation of the data array on the Δ^{33} S v. Δ^{36} S plot is happening. They say that " a rotation of the arrays to different slopes instead implies a change in the nature of the primary S-MIF signature, either due to a change in Δ^{36} S/ Δ^{33} S for a single atmospheric signal, or due to variable amounts of mixing between atmospheric sources with different Δ^{36} S/ Δ^{33} S" (pg. 2). However, they are not able to specify which sources could produce the signal that is demonstrated in the plot.

12.491 Non-conventional Light Stable Isotope Geochemistry Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.