Review of:

Triple-isotope composition of atmospheric oxygen as a tracer of biosphere productivity Luz et al., Nature 1999

There are two primary controls on the triple-isotope composition (^{16}O , ^{17}O , ^{18}O) of atmospheric O_2 :

- photosynthesis and respiration (mass dependent fractionation: ¹⁷O enrichment is about half ¹⁸O enrichment)
- photochemical reactions in the stratosphere (mass independent fractionation; ¹⁷O and ¹⁸O enrichment equal)

This paper describes a **terrarium experiment** used to simulate biological fractionation. Initially, air in the terrariums had the ¹⁷O anomaly characteristic of ambient air. After 100+ days, the anomaly had been removed.

 Δ^{17} O is deviation from normal MDF: Δ^{17} O = δ^{17} O - 0.521 δ^{18} O

In terrarium experiment, $\Delta^{17}O = 155 \pm 8$ per meg with respect to HLA.

Now, entering the stratosphere ...

UV photolysis of ozone in the stratosphere results in 17 O enrichment of CO₂ and 17 O depletion of O₂, leading to the 155 per meg anomaly.

The behavior of N_2O serves as a proxy for CO_2 distribution in the stratosphere and for CO_2 mixing into the troposphere. Pre-industrial ozone levels are estimated using existing models; Pre-industrial ozone CO_2 levels are obtained from ice cores.

Using this information, the production rate of $\Delta^{17}O_{02}$ is calculated. Accumulation of anomalous O_2 determined from the calculated production rates is between **104 and 131 per meg**.

"... the magnitude of the atmospheric $\Delta^{17}O_{O2}$ anomaly reflects the ratio between two important global processes – biospheric O₂ production and stratospheric photochemistry involving O₂, O₃, and CO₂."

Application: GISP2 Ice Core

 $\Delta^{17}O_{O2}^* = k[CO_2]/P$ (k is a constant relating anomalous O₂ production to [CO₂])

$$\Delta^{17}O_{02}^* = \Delta^{17}O_{02} - 155$$
 per meg

Normalized gross biosphere production, t is time before present, 0 is present.

 $P_t/P_0 = k_t/k_0([CO2]_t/[CO2]_0) \times (\Delta^{17}O_{O2}^*)_0/(\Delta^{17}O_{O2}^*)_t$

Calculated values of P_t/P_0 range from 0.87 to 0.97 (Table 2)

12.491 Non-conventional Light Stable Isotope Geochemistry Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.