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Statistical approach to estimation 

• Summary 
–Look at estimation from statistical point of 

view
 
–Propagation of covariance matrices
 
–Sequential estimation
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Statistical approach to estimation
 

• Examine the multivariate Gaussian distribution: 
1(x )T V 1 (x )1 

Multivariant f (x)  2e
 
(2 )n V 

Minimize    (x )T V1(x )  gives largest probability density 

• By minimizing the argument of the exponential in the 
probability density function, we maximize the
likelihood of the estimates (MLE). 

• This is just weighted least squares where the weight 
matrix is chosen to be the inverse of the covariance 
matrix of data noise 
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Data covariance matrix
 

• If we use the inverse of the covariance matrix of the 
noise in the data, we obtain a MLE if data noise is 
Gaussian distribution. 

• How do you obtain data covariance matrix? 
• Difficult question to answer completely 
• Issues to be considered: 

– Thermal noise in receiver gives on component
– Multipath could be treated as a noise-like quantity
– Signal-to-noise ratio of measurements allows an estimate of 

the noise (discussed later in course).
– In-complete mathematical model of observables can 


sometimes be treated as noise-like.
 
– Gain of GPS antenna will generate lower SNR at low elevation 

angles 
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Data covariance matrix
 

• In practice in GPS (as well as many other fields), the 
data covariance matrix is somewhat arbitrarily chosen. 

• Largest problem is temporal correlations in the
measurements. Typical GPS data set size for 24-
hours of data at 30 second sampling is 8x2880=23000
phase measurements. Since the inverse of the 
covariance matrix is required, fully accounting for
correlations requires the inverse of 23000x23000
matrix. 

• To store the matrix would require, 4Gbytes of memory
 
• Even if original covariance matrix is banded (ie., 

correlations over a time short compared to 24-hours),
the inverse of banded matrix is usually a full matrix 
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Data covariance matrix
 

• Methods on handling temporal correlations: 
– If measurements correlated over say 5-minute period, then 

use samples every 5-minutes (JPL method) 
– Use full rate data, but artificially inflate the noise on each 

measurement so that equivalent to say 5-minute sampling (ie., 
sqrt(10) higher noise on the 30-second sampled values 
(GAMIT method) 

– When looking a GPS results, always check the data noise 
assumptions (discussed more near end of course). 

• Assuming a valid data noise model can be developed, 

what can we say about noise in parameter estimates?
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Propagation of covariances 

• Given a data noise covariance matrix, the 
characteristics of expected values can be 
used to determine the covariance matrix of 
any linear combination of the measurements. 

Given linear operation : y  Ax with Vxx as
 

covariance matrix of x
 

Vyy  yyT  AxxTA T  A  xxT  A T
 

V  AV A T 
yy xx
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Propagation of covariance 

• Propagation of covariance can be used for 
any linear operator applied to random 
variables whose covariance matrix is already 
known. 

• Specific examples: 
– Covariance matrix of parameter estimates from 

least squares 
– Covariance matrix for post-fit residuals from least 

squares 
– Covariance matrix of derived quantities such as 

latitude, longitude and height from XYZ coordinate
estimates. 
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Covariance matrix of parameter estimates
 

• Propagation of covariance can be applied to the 
weighted least squares problem: 

x̂  (A T V 1A)1 A T V 1yyy yy 

 x̂x̂ T  (A T V 1A)1 A T V 1  yyT  V 1A(A T V 1A)1 
yy yy yy yy 

Vx̂x̂  (A T Vyy 
1A)1 

• Notice that the covariance matrix of parameter 
estimates is a natural output of the estimator if ATV-1A 
is inverted (does not need to be) 
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Covariance matrix of estimated 

parameters
 

• Notice that for the rigorous estimation, the inverse of the data 
covariance is needed (time consuming if non-diagonal) 

• To compute to parameter estimate covariance, only the 
covariance matrix of the data is needed (not the inverse) 

• In some cases, a non-rigorous inverse can be done with say a 
diagonal covariance matrix, but the parameter covariance matrix 
is rigorously computed using the full covariance matrix. This is a 
non-MLE but the covariance matrix of the parameters should be 
correct (just not the best estimates that can found). 

• This techniques could be used if storage of the full covariance 
matrix is possible, but inversion of the matrix is not because it 
would take too long or inverse can not be performed in place. 
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Covariance matrix of post-fit residuals
 

• Post-fit residuals are the differences between the 
observations and the values computed from the 
estimated parameters 

• Because some of the noise in the data are absorbed 

into the parameter estimates, in general, the post-fit 

residuals are not the same as the errors in the data.
 

• In some cases, they can be considerably smaller. 
• The covariance matrix of the post-fit residuals can be 

computed using propagation of covariances. 
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Covariance matrix of post-fit residuals 
• This can be computed using propagation on 

covariances: e is the vector of true errors, and 
v is vector of residuals 

y  Ax  e 
x̂  (A T Vyy 

1A)1A T Vyy 
1 y 

v  y  Ax̂  I  A(A T Vyy 
1A)1A T Vyy 

1 

Amount error reduced 
    

 

 
 
 

 

 
 
 
e    Eqn 1 

Vvv  vvT  Vyy  A(A T Vyy 
1A)1A T 
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Post-fit residuals
 

• Notice that we can compute the compute the 
covariance matrix of the post-fit residuals (a large
matrix in generate) 

• Eqn 1 on previous slide gives an equation of the form 
v=Be; why can we not compute the actual errors with
e=B-1v? 

• B is a singular matrix which has no unique inverse 
(there is in fact one inverse which would generate the
true errors) 

• Note: In this case, singularity does not mean that 
there is no inverse, it means there are an infinite 
number of inverses. 
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Example
 

• Consider the case shown below: When a rate 
of change is estimated, the slope estimate will 
absorb error in the last data point particularly 
as t increases. (Try this case yourself) 
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Covariance of derived quantities
 

• Propagation of covariances can be used to determine 
the covariance of derived quantities. Example 
latitude, longitude and radius.  is co-latitude,  is 
longitude, R is radius. N, E and U are north, east 
and radial changes (all in distance units). 
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Estimation in parts/Sequential estimation 

• A very powerful method for handling large 
data sets, takes advantage of the structure of 
the data covariance matrix if parts of it are 
uncorrelated (or assumed to be uncorrelated). 
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Sequential estimation
 

• Since the blocks of the data covariance matrix can be 
separately inverted, the blocks of the estimation 
(ATV-1A) can be formed separately can combined 
later. 

• Also since the parameters to be estimated can be 
often divided into those that effect all data (such as 
station coordinates) and those that effect data a one 
time or over a limited period of time (clocks and 
atmospheric delays) it is possible to separate these 
estimations (shown next page). 
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Sequential estimation 

• Sequential estimation with division of global and local 
parameters. V is covariance matrix of new data (uncorrelated 
with priori parameter estimates), Vxg is covariance matrix of prior 
parameter estimates with estimates xg and xl are local parameter 
estimates, x + 

g are new global parameter estimates. 
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Sequential estimation
 

• As each block of data is processed, the local 
parameters, xl, can be dropped and the 
covariance matrix of the global parameters xg
passed to the next estimation stage.  

• Total size of adjustment is at maximum the 
number of global parameters plus local 
parameters needed for the data being 
processed at the moment, rather than all of 
the local parameters. 
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Summary
 

• We examined the way covariance matrices 
and be manipulated 

• Estimation from a statistical point of view 
• Sequential estimation. 
• Next class continue with sequential estimation 

in terms of Kalman Filtering. 
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