Noble Gas Constraints on Mantle Structure

Harvard EPS 260 – MIT12.570 Sujoy Mukhopadhyay Harvard University

He isotope geochemistry

- Two isotopes of helium: ³He and ⁴He
 ³He is primordial
 ⁴He produced by radioactive decay of U and Th
- He isotopes are a measure of time-integrated $(U+Th)/^{3}$ He ratio:

$$\frac{{}^{4}\text{He}}{{}^{3}\text{He}} = \left(\frac{{}^{4}\text{He}}{{}^{3}\text{He}}\right)_{o} + 8\frac{{}^{238}\text{U}}{{}^{3}\text{He}}\left(e^{\lambda_{238}t} - 1\right) + 7\frac{{}^{235}\text{U}}{{}^{3}\text{He}}\left(e^{\lambda_{235}t} - 1\right) + 6\frac{{}^{232}\text{Th}}{{}^{3}\text{He}}\left(e^{\lambda_{232}t} - 1\right)$$

- Helium behaves as an incompatible element during mantle melting
- Helium expected to be more incompatible than U and Th during mantle melting

If so high ³He/⁴He ratios reflect less degassed mantle material

Helium isotopic evolution in a two layer mantle evolution of helium isotopes

He isotope geochemistry

- Two isotopes of helium: ³He and ⁴He
 ³He is primordial
 ⁴He produced by radioactive decay of U and Th
- He isotopes are a measure of time-integrated $(U+Th)/^{3}$ He ratio:

$$\frac{{}^{4}\text{He}}{{}^{3}\text{He}} = \left(\frac{{}^{4}\text{He}}{{}^{3}\text{He}}\right)_{o} + 8\frac{{}^{238}\text{U}}{{}^{3}\text{He}}\left(e^{\lambda_{238}t} - 1\right) + 7\frac{{}^{235}\text{U}}{{}^{3}\text{He}}\left(e^{\lambda_{235}t} - 1\right) + 6\frac{{}^{232}\text{Th}}{{}^{3}\text{He}}\left(e^{\lambda_{232}t} - 1\right)$$

- Helium behaves as an incompatible element during mantle melting
- Helium expected to be more incompatible than U and Th during mantle melting

If so high ³He/⁴He ratios reflect less degassed mantle material

Histogram of He isotope ratios in mid-ocean ridge basalts (MORBs)

- No relation between isotopic composition and spreading rate but the variance is inversely related to spreading rate
- Either reflects
 - efficiency of mixing in the upper mantle
 - differences in degree of magma homogenization

Image removed due to copyright considerations. Please see:

Graham, David W. "Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs." In *Noble Gases in Geochemistry and Cosmochemistry*. Edited by D. Porcelli, C. J. Ballentine and R. Wieler. *Reviews in Mineralogy and Geochemistry*. Vol. 47. Washington, DC: Mineralogiocal Society of America, pp. 247-319, 2002.

Comparison of He isotope ratios from selected MORs, OIBs, and continental hotspots

- The mean ³He/⁴He ratio from different ridge segments are nearly identical although the variance is different
- OIBs are much more variable
- ³He/⁴He ratios less than MORBs are frequently associated with radiogenic Pb (HIMU) and reflects recycled components in the mantle

He isotope ratios in ocean island basalts (OIBs)

- OIBs display a very large range in He isotopic composition
- He isotopic distribution has a double-peak; maxima at 8 R_A and 13 R_A
- The first maxima is identical to the mean from MORBs
 Clear indication of the involvement of depleted mantle in ocean island volcanism
- The 2nd peak is somewhat surprising and its meaning is unclear

MORBs: sample well-mixed degassed mantle with low ³He/U+Th OIBs: sample heterogeneous, less degassed mantle with high ³He/U+Th

Image removed due to copyright considerations. Please see:

Farley, K. A., and E. Neroda. "Noble gases in the Earth's mantle." *Ann Rev Earth Planet Sci* 26 (1998): 189-218.

Ne isotopic composition of mantle derived rocks

Image removed due to copyright considerations. Please see:

Graham, David W. "Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs." In *Noble Gases in Geochemistry and Cosmochemistry*.
Edited by D. Porcelli, C. J. Ballentine and R. Wieler. *Reviews in Mineralogy and Geochemistry*. Vol. 47.
Washington, DC: Mineralogiocal Society of America, pp. 247-319, 2002.

- Mantle ²⁰Ne/²²Ne ratio is fixed; ²¹Ne/²²Ne varies because of radiogenic ingrowth and varying degrees of degassing
- Different ocean islands have distinct ²¹Ne/²²Ne ratios; either reflects varying amounts of MORB mantle addition to the OIB source(s) or different parts of the mantle have been degassed and processed to different degrees

Geochemistry of Ar

Image removed due to copyright considerations. Please see:

Graham, David W. "Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs." In *Noble Gases in Geochemistry and Cosmochemistry*. Edited by D. Porcelli, C. J. Ballentine and R. Wieler. *Reviews in Mineralogy and Geochemistry*. Vol. 47. Washington, DC: Mineralogiocal Society of America, pp. 247-319, 2002.

- ²⁰Ne/²²Ne ratio in the mantle does
 not vary
- Ar isotopic ratios in mantle derived rocks can be corrected for air contamination by extrapolating the ⁴⁰Ar/³⁶Ar ratio to the upper mantle ²⁰Ne/²²Ne value

- 1% Ar in the atmosphere
- Significant air contamination for Ar
- Even when ³He/⁴He ratios are as high as 30 R_A, ⁴⁰Ar/³⁶Ar ratios can be atmospheric

Image removed due to copyright considerations. Please see:

Moreira, M., J. Kunz, and C. J. Allegre. "Rare gas systematics in popping rock: isotopic and elemental compositions in the upper mantle." *Science* 279 (1998): 1178-81.

Geochemistry of Ar

Image removed due to copyright considerations. Please see:

Graham, David W. "Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs." In *Noble Gases in Geochemistry and Cosmochemistry*. Edited by D. Porcelli, C. J. Ballentine and R. Wieler. *Reviews in Mineralogy and Geochemistry*. Vol. 47. Washington, DC: Mineralogiocal Society of America, pp. 247-319, 2002.

- MORB mantle ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ values are ~ 40000
- OIBs have lower ⁴⁰Ar/³⁶Ar ratios; reasonable limit is 8000
- A value of 8000 *does not* represent pristine mantle material; must indicate some processing, although significantly less degassed than the mantle source sampled by MORBs

The picture that emerges so far.....

- 1. MORBs are more homogenous compared to OIBs
- 2. MORBs dominantly sample a mantle source that is more processed and degassed compared to most OIBs

Evidence for a layered structure: The Missing Argon problem

- K content of Earth derived from the K/U ratio of 12700 in MORBs and U content of 20-22.5 ppb
- Implied K content of bulk Earth is 250-285 ppm
- Total ⁴⁰Ar produced over Earth history = $140-156 \times 10^{18} \text{ g}$
- 40 Ar in the atmosphere = 66 x 10¹⁸ g (~50%)
- 40 Ar in the crust = 9-12 x 10¹⁸ g

 $63-80 \ge 10^{18}$ of 40 Ar has to be in the mantle

Evidence for a layered structure: The Missing Argon problem

I) Constraints from ⁴⁰Ar flux

- ⁴He flux at ridge = 9.46×10^7 moles/yr
- ⁴He/⁴⁰Ar ratio in MORBs 2-15
 => ⁴⁰Ar flux 0.63-5 x 10⁷ moles/yr
- Mass of oceanic lithosphere passing through ridges = 5.76×10^{17} g/yr

If MORB mantle representative of entire mantle and if lithosphere completely degassed, ⁴⁰Ar content in mantle 1.8-14 10¹⁸g

Lower than the 63-81 x 10^{18} g estimated (Allegre et al., 1996) and requires a hidden reservoir for 40 Ar

Evidence for a layered structure: The Missing Argon problem II) Constraints from Potassium content

K content of MORB source is 40-50 ppm; if representative of entire mantle produces 22-28 x 10¹⁸ g of ⁴⁰Ar
 significantly less than the 63-80 x 10¹⁸ g of ⁴⁰Ar calculated to be in the mantle

<u>Bottom line</u>: The constraints from ⁴⁰Ar require some sort of layering or a hidden reservoir in the mantle

Any wiggle room? Maybe we do not know the K/U ratio of the mantle as well as we think (e.g., Lassiter 2004)

Image removed due to copyright considerations. Please see:

Lassiter, J.C. "The role of encycled oceanic crust in the potassium and argon budget of the Earth: Towards a resolution of the "Missing argon" problem. *Geochemistry Geophysics Geosystems* 5, no. Q11012, doi: 10.1029/2004GC000711 (2004): 16.

Noble Gas Concentrations

- He concentrations higher in MORBs than OIBs
- Maybe not too surprising since most OIBs are erupted at shallower water depths than MORBs; so would be degassed more
- Turns out that such an explanation is not really tenable...

Image removed due to copyright considerations. Please see:

Honda, Masahiko, and Desmond B Patterson. "Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses." *Geochimica et Cosmochimica Acta* 63, no. 18 (September 1999): 2863-2874.

Noble gas elemental ratios

Image removed due to copyright considerations. Please see:

Honda, Masahiko, and Desmond B Patterson. "Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses." *Geochimica et Cosmochimica Acta* 63, no. 18 (September 1999): 2863-2874.

Solubility controlled degassing does not explain the differences in gas concentration between MORBs and OIBs.

Noble gas elemental ratios

Image removed due to copyright considerations. Please see:

Honda, Masahiko, and Desmond B Patterson. "Systematic elemental fractionation of mantle-derived helium, neon, and argon in mid-oceanic ridge glasses." *Geochimica et Cosmochimica Acta* 63, no. 18 (September 1999): 2863-2874.

• Fractionation has to be recent, otherwise the slope would not be 1 and the ${}^{4}\text{He}/{}^{21}\text{Ne}$ ratio would have evolved back to the production value of ${\sim}2 \ge 10^{-7}$

Noble gas elemental ratios

Image removed due to copyright considerations. Please see:

Burnard, Pete. "Diffusive fractionation of noble gases and helium isotopes during mantle melting." *Earth and Planetary Science Letters* 220, no. 3-4 (April 2004): 287-295. Elsevier.

- The Ar concentration decreases with degassing as expected
- For some MORBs suites, as ⁴He/⁴⁰Ar ratio increases (more degassed), He concentration increases as well!! So the problem appears to be with He

Partition coefficient of the noble gases

Are the noble gases (⁴He, ²¹Ne, ⁴⁰Ar) really more incompatible than their radiogenic parents (e.g., U, Th, K)?

Image removed due to copyright considerations. Please see:

Brooker, R. A., V. Heber, S. P. Kelley, and B. J. Wood. "Noble Gas Partitioning Behaviour During Mantle Melting: A Possible Explanation for "The He Paradox"?" *Nature* 423 (2003): 738-741.

- For clinopyroxene, Ar slightly more incompatible than K
- Experimental data still not good enough to show conclusively how He behaves with respect to U and Th
- Time integrated ratios however provide some insights; for example high ³He/⁴He ratios are never associated with the most depleted isotopic signatures of Sr and Nd,
 => seems to imply that He is more incompatible than U and Th

Proving that He is more or less incompatible than U and Th will be a major challenge but will have tremendous implications for mantle geodynamics

Can nature tell us something about of partition coefficients? Maybe.....

Time integrated ratios however provide some insights; for example high ³He/⁴He ratios are never associated with the most depleted isotopic signatures of Sr and Nd

-> seems to imply that He is more incompatible than U and Th

Global relationship between He and other lithophile tracers: The wormograms

Image removed due to copyright considerations. Please see:

Graham, David W. "Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs." In *Noble Gases in Geochemistry and Cosmochemistry*. Edited by D. Porcelli, C. J. Ballentine and R. Wieler. *Reviews in Mineralogy and Geochemistry*. Vol. 47. Washington, DC: Mineralogiocal Society of America, pp. 247-319, 2002.

Inferences:

High ³He/⁴He ratios from a single, relatively undegassed mantle source that is characterized by well defined Sr, Nd, and Pb isotopic composition Primitive mantle may not exist but a reservoir that is less degassed than the MORB mantle almost certainly does.

Relationship between He and other lithophile tracers

- If high ³He/⁴He ratios are due to an ancient melt depletion event, high ³He/⁴He ratios should be associated with very depleted Srisotopic composition.
- Higher ³He/⁴He ratios are associated with *less* depleted ⁸⁷Sr/⁸⁶Sr isotopic signal

Image removed due to copyright considerations. Please see:

Kurz, M. D. "Rapid helium isotopic variability in Mauna Kea shield lava from the Hawaiian Scientific Drilling Project." *Geochemistry Geophysics Geosystems* 5, no. 4 (2004): Q04G14.

