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•	 Invert multiple types of data residuals simultaneously 
•	 Apply soft mutual constraints: empirical, physical, statistical 
•	 Deal with data in the same magnitude order 

This class introduces high-end research topics for performing joint geophysical 
inversions with multiple types of data involved, and inverted simultaneously.  In 
particular, joint seismic traveltimes (first arrivals) and gravity inversion. 

Joint Inversion Approach 
The data to be minimized in a least-square sense consist of: 

•	 Multiple geophysical domains data residuals 

•	 Cross parameter constraints (empirical, physical, statistical; defined as soft 
constraints) 

The objective function for this Joint Inversion problem can be formulated following the 
theory explained in Tarantola (2003). 

We deal with an expanded model vector: 

m = [m1m2m3...]T 

where m1, m2 and m3 are respectively, models of different geophysical domains (for the 
purposes of the project we would use only seismic-gravity). The objective function for 
Joint Inversion can be written as (Colombo & De Stefano, 2007): 

Φ	= rTV −1r + λ1m
T LT Lm + λ2m

T Hm + λ3m
TWm 

where the first term is the sum of the squared data misfit normalized by their variances 
(r=d-G(m)) or the data residuals, the second term is the model smoothness where Lm 
approximates the Laplacian of the model integrated over the entire model area. The third 
term is a regularizing equation that encourages smoothness (i.e. structural or pattern 
similarity) between models of different nature. The fourth term is introduced to account 
for the empirical parameter relationships (e.g. Gardner relation or other). Weighting 
terms are used throughout the inversion process to balance the influence of gravity vs. 
seismic in the inversion and/or to balance the influence of different cross-parameter 
regularization terms. 

The structural similarity among models is imposed by a cross-gradient function 
generalized to a 3D case (Gallardo & Meju, 2004): 

2 2t(x, y, z) = ∇m1 (x, y, z) × ∇m2 (x, y, z) 
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where m1 and m2 are two models (e.g., velocity and density). The whole objective 
function is minimized with respect to the multi-parameter model vector (Colombo & De 
Stefano, 2007). 

The detailed objective function will serve the purpose of constraining the “shapes” and 
the “parameters properties” at the same time. 

Seismic Traveltime Inversion 
The seismic first-arrival traveltime inversion is to minimize the following objective 
function: 

Φ = rTV −1r + λ1m
T LT Lm (3) 

Where the first two terms are same with those in equation (1), but here the data residuals 
r are only for traveltimes.   

The forward modeling program for calculating 2D or 3D first-arrival traveltimes applies 
graph theory developed by Moser (1991). Given an arbitrary source point, it shall expand 
the wavefront by Huygens principle using a graph template.  Along the wavefront, find 
the minimum time to be a new secondary source, and then expand from the new source 
using the template again. The approach is unconditional stable, while other methods 
often fail. For example, eikonal solver suffers from caustics when velocity contrast is 
larger than 2 . The key issue is how to achieve high-order accuracy in calculation at the 
same time minimizing computation time.  The approach may follow Zhang and Toksöz 
(1997), in which sorting for determining the minimum time along the wavefront is 
avoided by using an interval method to store traveltimes.   

One of the flexibilities with graph theory is that the wavefront raytracer is valid for any 
model mesh.  Therefore, it may be easy to incorporate multiple types of geophysical 
inversions with the same grid mesh. 

The traveltime tomography process applies the Conjugate Gradient inversion in a parallel 
fashion. After a set of forward calculations is completed, it stores raypaths locally on 
each node, and the inversion shall access the raypaths with the shots calculated on that 
node. Using Conjugate Gradient method does not require an explicit matrix for 
inversion, and thus it save memory tremendously. 

Gravity Forward and Inversion problems 
The gravity inversion problem is affected by inherent non-uniqueness. For such data 
there are infinite possible distributions for density, which can fit the observed data. The 
inversion of potential field data such as gravity is therefore only possible by introducing 
variable degrees of prior information and by imposing regularizing equations to the 
solution such to obtain physically meaningful data. 

Model parameterization is performed by means of a mesh of rectangular cells of constant 
density. The approach followed to solve the gravity inversion problem is similar to that of 
Li and Oldenburg (1998). Modifications consist of the introduction of limiting functional 
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to the density values imposed during the inversion and the definition of the model 
covariance matrix. 

Gravity Model Parameterization 
The most appropriate parameterization of the model is though a mesh of rectangular cells 
of constant density. The portions of the model outside the investigation area are padded 
with similar cells to account for border effects. The horizontal boundaries of the inversion 
area are defined by the location of the outermost measuring points. 

The mesh should be adaptive to account for the different resolution achievable by 
variable spatial sampling of the measurements and the decay of the gravity field versus 
depth. Three vectors are defined to describe the mesh dimension in the three Cartesian 
coordinates x, y, z. 

A sensitivity analysis is envisaged to determine the effect of the described model 
parameterizations on simple geometrical shapes such as a sphere. Trade off analysis of 
the size of the mesh versus the radius of the sphere as well as versus the density contrast 
and depth of the sphere would provide the guidelines for automatic generation of gravity 
inversion meshes. 

Gravity Forward Problem 
The data we are dealing with are the vertical components of the total gravity field 
measured from the earth surface. These values represent the effects of the combination of 
an ambient field and the field produced by an anomalous distribution of mass in the 
subsurface. By numerical processing the ambient field is removed from the data leaving 
only the anomalous field. Task of the inversion is therefore the reconstruction in the 
subsurface of the anomalous mass distribution. 

The vertical component of the gravity field produced by the density δ(x, y, z) is given by: 

Fz ( )r r 0 = γ ∫δ ( )r r 0 
r r 
z 
−

− 

r r 
z 

0

0 dv3 
V 

r
where r0 is the vector denoting the observation location and r r  is the source location. V 
represents the volume of the anomalous mass, and γ is the gravitational constant (Li and 
Oldenburg, 1998). The Cartesian system is right-handed with origin on the earth’s surface 
and z pointing vertically downward. 

The gravity forward algorithm is based on the principle of superimposition of the effects. 
The density model is divided in cells each with the shape of a right rectangular prism. 
The gravitational field on a particular point of the space is given by the sum of all the 
gravitational fields due to all the prisms of the model, computed in that point. The exact 
analytical expression of the gravitational attraction of a right rectangular prism is 
described by Haaz (1953), Nagy (1966) and Okabe (1979). 
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Gravity Inverse Problem 

The inversion algorithm is based on the iterative least squares minimization of an 
objective function of the form: 

φ(m,dobs ) = φm (m)+ φd (dobs ) 
where φd(dobs) is a misfit function and φm(m) is a regularization function, m is the vector 
of model parameters (each component of m is the density of a particular cell of the 
model), dobs is the vector of observed data (gravity measurements at the station 
positions). Furthermore, 

2obs obsφd (d ) = Wd (d − d )
where d is the vector of data, computed by the forward algorithm with the current model 
and Wd is the Cholesky factorization of the inverse data covariance matrix. If d has N 
components, φd(dobs) is distributed as a χ2(N) and E[χ2(N)]=N provides a target misfit for 
the inversion. 

The regularization function φm(m) takes the form: 

φm ( )m = α s ∫ ws {w(z)[m(r)− m0 ]}2 dv + 
V 

w z [ ⎫
2

⎧∂ ( )  ( )m r − m0 ]α x ∫ wx ⎨ ⎬ dv + 
v ⎩ ∂x ⎭

w( )  ( )z [ − 0 ]⎫
2

⎧∂ m r m
α y ∫ wy ⎨ ⎬ dv + 

v ⎩ ∂y ⎭ 

⎧∂w( )  ( )z [m r − m0 ]⎫
2 

α z ∫ 
v 

wz ⎨
⎩ ∂z ⎬

⎭
dv 

where αi are weights which affect the relative importance of the different components of 
the objective function, wi are 3D weighting functions and w(z) is a depth weighting 
function of the form: 

w z( ) =
(z + z 

1

0 )β / 2 

where parameters z0 and β have to be calibrated. The function ω(z) is used to counteract 
the decay of the gravity kernel with depth. If no depth weighting is used, the inversion 
will tend to concentrate all the mass anomalies near to the surface. 

The matricial form of φ(m,dobs), discretization of φm(m) and calibration of w(z) are all 
explained in detail in Li & Oldenburg (1996) and (1998).  
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In addition to the algorithm of Li & Oldenburg, the model covariance matrix (Tarantola, 
2003), can be introduced in the linearized system. This allows setting constraints when 
prior knowledge of correlation between cells is available. In this matrix the principal 
diagonal contains variances of cell densities, while the off-diagonal elements are filled 
with co-variances between model parameters. If a prior knowledge of the model is 
available, the user can set the variances of cells and their correlation coefficients with 
other cells of the model (e.g. using a model mask: a reference pattern, a refracted 
migrated image, etc.). Co-variances are then calculated between selected cells and the off 
diagonal elements of the model covariance matrix are filled-in. 

The linearized system of equations to be inverted in the least squares sense takes the 
form: 

W


Wd G


φ⎡ 
⎢ 
⎢ 
⎢⎣

⎡
⎤
 0
 ⎤

⎥ 
⎥ 
⎥⎦


Δm =
⎢ 
⎢ 
⎢⎣


⎥ 
⎥ 
⎥⎦


WM 0


Wd Δd 

kg/m3 

where Wφ is the matricial form of φm(m), WM is the Cholesky factorization of the inverse 
model covariance matrix, Δm = (m-mpri) (“pri” stands for “prior model” or “initial 
model”) and Δd = (dobs-dcal) (dcal is the data vector computed from the prior model with 
the forward algorithm). G is the forward matrix and 
d =
G
⋅
m 

is the matricial expression of the forward process. 

With this formulation negative or large values of density can arise from the inversion 
process. For this reason parameter functionals varying only between user assigned 
density values should be introduced in the inverse problem. Density can then be 
recovered by reverse transformation after the inversion. 

The above concepts are demonstrated numerically and displayed by Figure 1 to  

Figure 6. 

Figures 1-6 have been removed due to copyright restrictions. 

Figure 1. Cross-section of synthetic model 3D (background: δ=0kg/m3, cube: δ=1000kg/m3). 

Figure 2. Gravity field produced by the synthetic model in Figure 1 plus noise. 

Figure 3. Inversion results if no constraints are imposed to the inversion. 

Figure 4. Inversion results after imposing the w(z) weighting function to counteract the natural decay of the 
gravity field. 

Figure 5. Inversion results after imposing the w(z) weighting function and imposing upper and lowed 
bounds to the density values from the inversion. 
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Figure 6. Inversion results obtained after imposing the cross-correlation of the model cells. The density 
values were uniformly set to 200kg/m3 in the starting model. 

Joint Inversion workflows 
The Joint Inversion workflow can be represented as per Figure 7 (below). The workflow 
is extended to the inclusion of an additional geophysical method (other) and to the 
inversion of the post-migration domain residuals (i.e. CIG: Common Image Gather 
residuals). The two described extensions of the workflow can be considered as future 
additional developments after the Seismic travel-time / Gravity JI.  

This figure has been removed due to copyright restrictions. 

Figure 7. General Joint Inversion Workflow with extension to: 1) an additional methodology (i.e. horizontal 
integration); 2) include tomography of image gathers. 
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Joint Seismic and Gravity Inversion Examples 
Numerical example (Colombo et al., 2009): 

This figure has been removed due to copyright restrictions. 

Real-Data Examples: 

This figure has been removed due to copyright restrictions. 

With seismic refraction statics applied: 

This figure has been removed due to copyright restrictions. 

With statics from joint seismic and gravity inversion: 

This figure has been removed due to copyright restrictions. 
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