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Spring 2006  Lecture 04b 
 
 

Fundamentals of Factor Analysis: Satellite Image 
 

I. Correlation 
 
A. Variance and Covariance 
 

1. Variance (of x is denoted Sx2; variance of y is denoted Sy2) is a measure of the 
scatter of values of a variable about its mean: 
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2. Covariance (of x and y) expresses the relationship between two variables (a 
measure of the scatter of values of points in a plane relative to the centroid of 
the data set): 
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B. Correlation coefficient 
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     where  Sx = std. dev. of x = (Σ(xi-
_
x   )2/n-1)1/2 

                                           

     and    Sy = std. dev. of y = (Σ(yi-
_
y   )2/n-1)1/2 

 
i.e. Sx and Sy relate the deviations of points from the average relative to the 
"range" (actually std. dev.) of the observations. 
In other words, the Covariance divided by the Variance. 

 
3. r2 is "the variance of Y accounted for by its 

  covariance with x" (usually expressed in % units).  
 
C. Relation to linear regressions (x on y; y on x; others) 
 

1. Common linear regression of y on x: y = A + Bx 
 

      Let  S = Σ (yi - A - B xi)2 
 

   Set ∂S/∂A =0; ∂S/∂B =0; solve for A and B. 
 

2. Matrix math solution of Linear Regression: 
 

   for eq'n Ax = b  (m eq'ns, n unknowns), 
   if columns of A are linearly independent, 
   then: 

 
x = (AT A)−1 AT b 
 

a. For example, for the simple linear regression  
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                y = C + Dx,  

 
   where we want to fit pairs of data  

 
                xi, yi   

   we want to find  
 

                 C, D  
 

  that mimimize  
 

                Σ [yi - (C + Dxi)]2  
   In matrix form, we write the equation y = C + Dx as: 
               _     _               _    _ 
              |  1 x1 |   _ _       |  y1  | 
              |  1 x2 |  | C |      |  y2  | 
              |  . .  |  | D |  =   |  .   | 
              |  . .  |   

_
 
_
       |  .   | 

              |  1 xn |             |  yn | _ _ _ _
               

_
     

_               _
    

_
 

 
      i.e.        A        x    =      b 
 
Numerical example:  
               _     _               _     _ 
              |  1 1  |   _ _       |  4.1  | 
              |  1 2  |  | C |      |  5.9  | 
              |  1 3  |  | D |  =   |  7.8  | 
              |  1 4  |   

_
 
_
       |  10.3 | 

              |  1 5 |             |  12.1 | _ _ _
               

_
    

_               _
    

_
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       Similarly, to solve the equation y = A + Bx +Cx2: 

                 _           _               _    _ 
              |  1  x1  x12 |   _ _       |  y1  | 
              |  1  x2  x22 |  | A |      |  y2  | 
              |  .  .       |  |_B_|  =   |  .   | 
              |  .  .       |  | C |      |  .   | _ _
              |  1  xn  xn2_|   

_
 
_
       |  yn _| _ _

               
_
           

_               _
    

_
 

b. Simple matrix formulas also allow you to compute the estimated uncertainties 
of the regression coefficients and the correlation coefficients. 

 
II. Correlation in n dimensions 
 
A. Multiple linear regression (e.g. y = a + bx1 + cx2, the equation for a plane in 3D 

space) 
 
B. r-matrix (later we will refer to this as the matrix Σ) 
 
   Property     1     2     3     4     5 

 
          1   1.00  0.86  0.45  0.83  0.45 
          2   0.86  1.00  0.74  0.23  0.64 
          3   0.45  0.74  1.00  0.78  0.57 
          4   0.83  0.23  0.78  1.00  0.39 
          5   0.45  0.64  0.57  0.39  1.00 

 
                        (ρij)  

C. Ellipsoids and eigenvectors 
 

        A       x   =    λ      x
 

     square  eigen-    eigen-   
     matrix  vector    value 

 
  One way to find eigenvectors: 
 

1st eigenvector = major axis of ellipsoid 
2nd eigenvector = largest minor axis of ellipsoid 
etc. 

 
This works more or less as if we did a regression to get a line that "explains" 

X2

X1

Bivariate scatter diagram with equal-density contour lines. The inner ellipse 
encloses 66% of the data points, The outer ellipse 95% of the data points.

Figure by MIT OpenCourseWare. Adapted from source: Joreskog et al. Geological Factor Analysis (1976).
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most of the variance (the dominant linear trend of the data in n-dimensional space), 
subtracted that regression from the data, then perform another regression to find 
the next most important contribution to the variance, and so forth. 

 
1. This procedure works because we can rewrite the equation (II.C.) as: 

 
     (A - λI) x = 0      (Equation II.C.1) 

 
   In other words, the unknown vector x is orthogonal to all row vectors of 
     (A-λI).   

 
   The expression for the determinant of A-λI is a polynomial of degree equal to the 

number of rows and columns of the square matrix A.  The roots of the 
polynomial are the eigenvalues.  If A is a real, square, and symmetric matrix, the 
roots are always real.  However, these p eigenvalues may not always be 
different and some may equal zero.  If two or more eigenvalues are equal, we 
say that they are multiple eigenvalues; otherwise we say the eigenvalue is 
distinct. 

 
Example: consider a 2x2  symmetrical singular (i.e., determinant = 0) matrix; 

equation II.C.1 is then: 
 

| r11-λ   r12   | 
| r21     r22-λ |    = 0 

 
(r11-λ)(r22-λ) - r12r21 = 0 
 
λ2 - λ(r11+r22) + (r11r22 - r12r21) = 0  

i.e., a simple quadratic equation (also: remember, by assumption of 
symmetry, r12=r21) 

  
Things get out of hand quickly as the matrix gets bigger (that's what computers 

are for!). 
 

2. Once the eigenvalues are known, the eigenvectors can be calculated from (a.) 
 

a. A unique solution cannot be obtained for an eigenvector.  If x is a solution, so 
is cx, where c is a scalar.  By convention, eigenvectors are therefore always 
normalized (unit length). 

 
b. Eigenvectors associated with different eigenvalues are orthogonal.  Multiple 

solutions are possible for multiple eigenvalues, but it is always possible to 
choose an eigenvector which is orthogonal to all other eigenvectors.  

 
3. If the eigenvalues λ are placed as the elements of a diagonal matrix Λ, and the 

eigenvectors are collected as columns into the matrix U, then eq. (II.C.1) 
becomes: 

 
A U = U Λ 
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         _1 2 3..   n_   _1    2    n_      _1 2 3...  n_   _1 2 3...  n_ 
       1|             | | EV1 EV2 …   |    | EV1 EV2 …   | |λ1 0 0…      |    

        |             | |  ↓   ↓      |    |  ↓   ↓      | |0  λ2        | 
       2|   n x n     | |  .   .      |    |  .   .      | |     .       | 
        |   Square    | |  .   .      | =  |  .   .      | |             | 
       3|   Matrix    | |  .   .      |    |  .   .      | |         .   | 
        |             | |  .   .      |    |  .   .      | |             | 
        |             | |  .   .      |    |  .   .      | |             | 
       n|_           _| |_ .   .     _|    |_ .   .     _| |_          λn| 

        
  

4. The matrix U (the eigenvector matrix) is square orthonormal (the matrix is nxn 
and the eigenvectors are of unit length), so U UT = UT U = I, therefore: 

 
A = U Λ UT 

 
Therefore any symmetric matrix such as the correlation coefficient table can be 
expressed in this form: 

 
      Σ =     U      Φ      UT       
   m x m    m x N  N x N  N x m        
   r-table                  
         eigenvectors 
                   eigenvalues 
                          eigenvectors(transpose) 

 
 

III. Principle Components Analysis: basically, the principle components are the 
eigenvectors as outlined above: 
 
A. PCA is inherently variance-oriented; it accounts for maximum variance of all the 

observed variables. In other words, PCA accepts that large part of the total variance 
of a variable is important and common to other observed variables. 

 
B. Factor analysis (below) is correlation-oriented; it accounts for the maximum 

intercorrelation of variables.  In other words, factor analysis allows for a 
considerable "amount of uniqueness" to be present in the data and utilizes only that 
part of a variable that takes part in correlation with other variables; i.e., to account 
for covariance rather than variance. 

 
Example: imagine a lake with three stream systems draining into it.  Suppose that 

each of the drainage basins has a distinctive (average) sediment composition, 
and that the sediments within the lake can be described as linear combinations 
of the sediments derived from each stream system.  What is interesting in this 
case is the distribution of the three stream system component sediments, not 
the mineralogy or chemical composition per se (i.e., we don't care if Al correlates 
with Si).  So we adopt a framework that lets us describe the raw data (chemical 
or mineralogical composition) in terms of sums of source  components, and map 
the distribution of the components. 
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Source of example: Joreskog et al.  
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IV. Species space and sample space 
 
A. Samples in species space: 
 

PROPERTY 2

PROPERTY 1

PROPERTY 3

sample 1

sample 2

     
B. R Mode (species in sample space): 
  

sample 2

sample 1

sample 3

PROPERTY  1

PROPERTY 2
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C. What is sample space? 
 

1. Consider the species percentage data: 
 

  PaL PaR Gbu Ndu 
Sample 1 17.4 17.4 39.1 26.1 
Sample 2 36.4 22.7 27.3 13.6 
 
Average 26.9 20.1 33.2 19.9 

  
2. Express each species percentage in terms of its deviation from the average for the 

samples: 
 

  PaL PaR Gbu Ndu 
Sample 1 -9.5 -2.7 +5.9 +6.2 
Sample 2 +9.5 +2.7 -5.9 -6.2 

 
3. Transpose: 
 

  Sample 1 Sample 2 length 
PaL -9.5 +9.5 13.42 
PaR -2.7 +2.7  3.77 
Gbu +5.9 -5.9  8.38 
Ndu +6.2 -6.2  8.80 

 
4. Row-normalize (to unit vector length): 
 

  Sample 1 Sample 2 
PaL -0.71 +0.71 
PaR -0.71 +0.71 
Gbu +0.71 -0.71 
Ndu +0.71 -0.71 
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5. Plotting the species as vectors in sample space: 
 

 
 
Note that the PaL and PaR vectors coincide, as do the Gbu and Ndu vectors. 

 
6. In sample space, species that are highly correlated fall in the same vector region, i.e., 

there is a very small angle between highly correlated species. 
 

a. The correlation coefficient is the cosine of the angle between the two 
PROPERTY vectors in sample space:  Let a and b any two PROPERTY 
vectors (with a common origin).  Then 

 
                              aTb 
               ρ = cos θ = __________ 
 
                            |a| |b| 
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So in this case, the correlation coefficient table is: 
 
  PaL PaR Gbu Ndu 
PaL +1 +1 -1 -1 
PaR +1 +1 -1 -1 
Gbu -1 -1 +1 +1 
Ndu -1 -1 +1 +1 

 
So (PaL and PaR) and (Gbu and Ndu) are positively correlated whereas 
(PaL and GBu), (PaL and Ndu), (PaR and Gbu) and (PaR and Ndu) are 
negatively correlated. 
 
This method of calculating the correlation coefficient is mathematically 
equivalent to the "normal" definition of the correlation coefficient given at the 
beginning; i.e., this sample space diagram is the basis for the definition of the 
correlation coefficient!  

 
 When there are only two samples as in this example, this definition seems as 

there are only three possibilities: r = -1, 0, +1. This is because any two data 
pairs define a straight line (unless they coincide, in which case no line is 
defined) and this line has either a positive slope or a negative slope. But 
when there are more samples (i.e. multidimensional sample space), the data 
pairs no longer have to define a line, the vectors can occur in any region of 
sample space, and r can have any value –1 < r < 1. 

 
If A is the matrix with the row-normalized (i.e., unit length so that  

|a| = |b| =1) vectors of species data (relative to the mean for each species) in 
sample space, then the correlation coefficient table is the inner product of A: 

 
Σ = Α ΑΤ 

 
7. Likewise, one can define a similarity coefficient as the cosine of the angle 

between samples in PROPERTY space; it is a measure of how similar two 
samples are to one another in their PROPERTY composition.  We will call the 
similarity coefficient matrix H. 

 
8. What we are going to do next is reduce the number of "species" by combining 

them into "factors". In other words, we are going to reduce our system from 
having (say) 31 species counts for each sample to having (say) 6 "factor 
loadings" for each sample.  

Continuing on from equation II.C.4., a math theorem says that a symmetric 
matrix like the correlation matrix Σ can be expressed as: 

 
         Σ = A Φ AT  +  Ψ 

 
    where "Σ is the p by p population covariance matrix of the observed variables" 

(the symmetrical correlation coefficient matrix), "A is the p by k matrix of factor 
loadings, Φ is the k by k covariance matrix for the factors (if the factors are in 
standardized form, this is a correlation matrix with ones in the diagonal), and Ψ 
is the p by p residual covariance matrix." 

     Source: Joreskog et al.    
9. If we force the solution to be orthogonal (factors are uncorrelated), then Φ = I 

and hence: 
 

             Σ = A AT  +  Ψ 
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Ψ is now a diagonal matrix (i.e. there is 
covariance between the factors) 

 
10. A math theorem tells us how to calculate the 
        Singular Value Decomposition (SVD) of a matrix: 

 
 Let us assume that we have an N x p (N>p) data matrix X. The product moments 

are defined as: 
 

major product moment (MPM) V = X XT 

minor product moment (mPM) U = XT X 
 

Then we can decompose the data matrix as: 
 

X = V Γ U 
 

where 
 

V is an N by r matrix with orthonormal columns 
U is a p by r matrix with orthonormal columns, and 
Γ is a diagonal matrix of order r by r with positive diagonal elements γ1, 

γ2, ...γr called singular values of X. 
 

The major product moment XXT, which is square, symmetric, and of order N 
by N  has r positive eigenvalues and (N-r) zero eigenvalues. The positive 
eigenvalues are γ12, γ22, ..., γr2 and the corresponding eigenvectors are 
u1, u2, ..., ur.  

The minor product moment XTX, which is square, symmetric, and of order p 
by p  has r positive eigenvalues and (p-r) zero eigenvalues. The positive 
eigenvalues are γ12, γ22, ..., γr2 and the corresponding eigenvectors are 
v1, v2, ..., vr.  

The positive eigenvalues of X XT and XT X are the same, namely γ12, γ22, ..., 
γr2 . Furthermore, if vm is an eigenvector of X XT and um and eigenvector 
of XT X corresponding to one of these eigenvalues γm2, then the following 
relationships hold between um and vm : 

 
vm = (1/γm) X um   and   um = (1/γm) XT vm  
These relationships make it possible to compute vm from um and vice-

versa, i.e. 
 

V = X U Γ-1    and    U = XT V Γ-1. 
 

The analysis of the minor product moment XTX is referred to as R-mode 
analysis and that of the major product moment XXT as Q-mode analysis. 

 
11. Major problem with this analysis: there are an infinite number of solutions!  If we 

find a solution to the problem (a set of orthogonal vectors that describe the 
data), then any rotation of that set of vectors is also a solution!  How do we 
choose any one of these? 

 
a. Rotation of a set of row vectors in the matrix X can simply be done through 

the operation: 
 

                 Y =  X R 
 

   where R is a rotation (transformation) matrix conforming to the requirement 
that  R RT = I  for a rigid rotation. 
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b. In the end, the choice is arbitrary (this is one of the problems with factor 

analysis).  However, certain more-or-less reasonable choices can be made: 
 

i. As much as possible, try to make the factors simple, i.e., have a few high 
loadings and many zero or near-zero loadings. 

 
ii. Rotate the axes so as to put as much variance as possible into the factors 

(VARIMAX criterion).  i.e., we try to "explain" as much of the variance as 
possible with the fewest possible factors.  This solution is often favored 
because it is an objective solution (i.e., it arises untouched by human hands). 
That doesn't necessarily make it a better solution, however. 

 
12. Brief summary of factor analysis steps: 

 
a. Start with a data table with rows of samples and columns of species 
b. Row-normalize the data table so that each row has unit length. (it is now 

referred to as W). 
c. Calculate the minor product moment (mpm) = WT W 
d. Calculate the eigenvalues (Λ) and eigenvectors (U) of the mpM. 
e. We can then express each sample in terms of the eigenvectors by multiplying: 

W U (the result of this calculation is a list of the eigenvector composition of 
each sample; e.g., each sample can be expressed as a linear combination of 
the eigenvectors 

f. We now choose to simplify the properties of our data set by throwing out all 
but the first few (dominant) eigenvectors, and then describe our data set in 
terms of these. This is now the factor matrix V, which describes the loadings 
of each species to each factor. 

g. Because we have thrown out some information, the factor loading matrix A = 
W V does not fit the original data exactly. 

h. In order to improve the fit somewhat, we will now rotate the factor matrix V so 
that it accounts for as much of the variance as possible. This is done through 
an iterative process: we rotate around axis one to find the maximum, then 
rotate around axis two to find the maximum, etc. for all of the axes (= # of 
factors). This process is repeated until the result converges (no further 
improvement in fit is found). 

i. Our final rotated factor matrix (the Varimax solution) is F, a list of the 
composition of each species described as a linear combination of the 
individual factors. The samples are now described as 

 
13. One problem with this type of analysis is that the number of factors is arbitrary!  

The geologist's approach to choosing number of factors: make maps.  Keep 
adding factors until additional factors become "unmappable". 

 
14. Negative factor problem: the mathematics don't specify that you only can add 

things; the math is just as happy subtracting a factor.  In chemical and physical 
reality, a sample can only be the sum of positive components (philosophically, it 
may be possible to subtract components, e.g.,  incongruently dissolve something 
away to create a "negative" component of a different composition than the pre-
existing components).  Various approaches to this problem: (a) ignore the 
problem (most common), (b) rotate solution so that factors are (mainly) positive 
(but which rotation should you choose?) 

 
15. Another problem: summation to 100% and the "...and everything else factor" 
 

Supplementary Reading: 
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Joreskog, Klovan, and Reyment, Geological Factor Analysis, Elsevier, Amsterdam, 1976, 

178 p. 
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