
Lecture 1 overview

• Sources and sinks of material to the
ocean

• Box models and residence times

• Major elements

• Biological and trace elements

• Ocean thermohaline circulation

Why cover stable isotopes?

• Unique tracers of biogeochemical processes:

! Trace source and sink processes important for the

inventories of major nutrients and chemical

constituents.

! Record past changes in physical and biological

processes affecting the ocean.

Lecture 2:

Introduction to Stable Isotopes

• Definitions

• Measurement

• Theories and Models

• Applications in Marine Chemistry

! Physical and chemical processes

! Biological processes

! Paleoceanography

• Isotopes are atoms that contain the

same number of protons but differ in the

number of neutrons.

Definitions
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• Isotopes are atoms that contain the

same number of protons but differ in the

number of neutrons.

Definitions
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Stable isotopes 

do not decay 

radioactively

• Isotopes are atoms that contain the

same number of protons but differ in the

number of neutrons.
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Isotope Ratios

• Isotope ratios can be measured more
precisely than absolute abundances of
isotopes.

• Generally, isotope ratios are reported as the
ratio of a heavy (rare) isotope to a light
(primary) isotope:

" 13RCO2 = 13CO2/
12CO2

" 15RN2 = 15N2/
14N2



Delta Notation

• Isotopic ratios expressed relative to a standard using delta

notation:

• Rsample is  the isotopic ratio of a sample

(e.g.,18Rsample = 18O/16Osample)

• Rstd is the isotopic ratio of the standard, or reference material
• Rsample < Rstd gives negative " value and is said to be depleted

• Rsample > Rstd gives positive " value, said to be enriched

Example: For a sample with 18O/16O=0.00198

Delta values are often expressed in units of permil (‰) by

multiplying by a factor of 1000.
In this example, "18O is -0.010 (unitless) or -10‰

" = [Rsample/Rstd -1]

"18O = [0.00198/0.00200 -1] = -0.010

Isotope Ratio Standards
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meteorite
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Mean Ocean Water
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International standards used for reporting isotopic values

• Definitions

• Measurement

• Theories and Models

• Applications in Marine Chemistry

! Physical processes

! Chemical processes

! Biological processes

! Paleoceanography

Lecture 2:

Introduction to Stable Isotopes
Measuring Isotopic Ratios

• Convert element of interest into a stable gas.

• Purify/separate gas analyte from contaminants (off-line

or on-line)

• Measure isotopic ratios on an isotope ratio mass

spectrometer (IRMS)



Measuring Isotopic Ratios

• Example 1: Carbon isotope ratio of calcite shells.

! Shells (CaCO3) + acid # CO2

! CO2 # IRMS, measure m/z:
" 44 (16O-12C-16O)

" 45 (16O-13C-16O or 17O-12C-16O or 16O-12C-17O )

" 46 (18O-12C-16O or 16O-12C-18O)

• Example 2: Nitrogen and Oxygen isotopic ratios of
dissolved nitrate.

! Dissolved nitrate + denitrifying bacteria # N2O

! N2O #Purify from CO2 # IRMS, measure m/z:
" 44 (14N-14N-16O)

" 45 (15N-14N-16O or 14N-15N-16O or 14N-14N-17O)

" 46 (14N-14N-18O)

Measuring Isotopic Ratios

Ion Source

Sample Inlet

Magnetic Sector

Detectors

Flight Tube

Ion Beam

m/z = 44, 45, 46 for CO2, N2O
m/z = 28, 29 for N2

m/z = 32, 33, 34 for O2

Measuring Isotopic Ratios

46Rsample

46Rstd

46R

time

Dual inlet mode Continuous flow mode

46R

time

• Definitions

• Measurement

• Theories and Models

• Applications in Marine Chemistry

! Physical processes

! Chemical processes

! Biological processes

! Paleoceanography

Lecture 2:

Introduction to Stable Isotopes



Isotopic Fractionation

• Two types of isotopic fractionation that cause
changes in isotopic ratios

! Kinetic isotope fractionation:
" One isotope reacts, diffuses, or evaporates faster than the

other.

" Can be due to chemical, physical, or biological processes.

" Usually, the lighter isotope reacts or diffuses faster.

" Magnitude of isotope effect is temperature, reaction rate,
and species dependent

! Equilibrium isotope fractionation:
" Exchange reactions in which a single atom is exchanged

between 2 species (with isotopic preference).

" Bidirectional (reversible) chemical reactions

" Temperature dependent

Kinetic Isotope Fractionation
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• In a diatomic molecule, substitution

with a heavy isotope lowers the ground

state vibrational energy and makes it

marginally more difficult to break the

bond

• Reactions of heavy isotopically

substituted molecules are marginally

slower than light isotopic molecules and

“discrimination” against the heavy

molecule leads to kinetic isotope

fractionation:

“Fractionation factor”: #k = kl/kh > 1

“Isotope effect”: $k = (#k-1) > 0

AI A + I

A*I   A + *I

kl

kh

Kinetic Isotope Fractionation

• *I/Iproduct<
*I/Isubstrate

• Consumption of substrate leaves behind substrate enriched in the
heavy isotope, and becomes increasingly enriched as the amount of
substrate that is consumed increases

• In turn, the product also becomes proportionately heavier.

• The greater the isotope effect, or isotopic discrimination, the more
dramatic the enrichment for the same level of substrate
consumption.

AI A + I

A*I   A + *I

kl

kh

Kinetic Isotope Fractionation Models

• Closed system

• Unidirectional

• Constant isotope effect

• No replenishment of reactant

• No removal of product

• Open system

• Addition/replenishment of reactant and/or removal of

product

• Unidirectional or bidirectional

• Constant isotope effect

• Doesn’t have to be at steady state



Kinetic Isotope Fractionation

"s ! "s0 - $ * ln(f)

"inst.prod. ! "s - $

"accum.prod * (1-f) + "s *f ! "s0

"accum.prod. ! "s0 + $*f*ln(f)/(1-f)

In closed systems: substrate --> product

$ is the isotope effect (> 0 when kl > kh) 

f is the fraction of substrate remaining ([S]/[S]0)

The accumulated product follows from mass balance:

Kinetic Isotope Fractionation

"
$

$

"substrate ="s0 - $ * ln(f)

Fraction of substrate remaining 
f % [S]/[S]0

"inst.prod. = "s - $

"accum.prod. = "s0 + $*f*ln(f)/(1-f)

In closed systems: substrate--> product

1 0

Kinetic Isotope Fractionation

"substrate ="s0 - $ * ln(f)

Calculate $ from a closed system reaction by measuring

the change in either "substrate or "accum.prod as a function of f.

"

-ln(f)

slope = $

"accum.prod. = "s0 + $*f*ln(f)/(1-f)

"

f*ln(f)/(1-f)

slope = $

Kinetic Isotope Fractionation

In cases where very little of the substrate has been
consumed (f ! 1): $ = "substrate - "prod

"
$

f % [S]/[S]0

1 0



Kinetic Isotope Fractionation

CO2 Corg
photosynthesis

"13CCO2 (-8 to -10‰)

Substrate Product
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NO3
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$ ! 20‰
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Kinetic Isotope Fractionation
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Nitrate Uptake by Phytoplankton

Observed surface [NO3
-]

gradient corresponds to
sediment "15N-PN gradient in

expected direction.

Kinetic Isotope Fractionation Models

• Closed system

• Unidirectional

• Constant isotope effect

• No replenishment of reactant

• No removal of product

• Open system

• Addition/replenishment of reactant and/or removal of

product

• Unidirectional or bidirectional

• Doesn’t have to be at steady state

Open System: Steady State Model

"Min

"&in*"in

"Mout 
" Mout*"out

Deep NO3
-

MNO3

"NO3

Inputs of N to ocean

(nitrogen fixation, rivers, 

atmospheric deposition)

Loss of N from ocean

(denitrification, burial)

Determine fluxes to and from a system based on mass and isotope

budgets, e.g. marine nitrogen budget:

Open System: Steady State Model

Deep NO3
-

MNO3

"NO3

Input of N

(nitrogen fixation, rivers, 

atmospheric deposition)

Loss of N

(denitrification, burial)

Mass Balance: " Min= " Mout

Isotope Balance: " Min*"in = " Mout*"out= " Mout* ("NO3 - $out)
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Open System: Steady State Model

Mass Balance: " Min= " Mout

Isotope Balance: " Min*"in = " Mout*"out= " Mout* ("NO3 - $out)

In: Nitrogen Fixation (125 Tg N/yr, "15N = 0‰)

Out: Sedimentary denitrification (? Tg N/yr, 15$ = 0‰)

Water column denitrification (80 Tg N/yr, 15$ = 25‰)

MN2fix*"N2fix = Msd* ("NO3 - $sd) + Mwd * ("NO3 - $wd)

(125 Tg N/yr)*(0‰) = (? Tg N/yr)*(5‰ - 0‰) + (80 Tg N/yr)*(5‰ - 25‰)

0 Tg N/yr ‰ = (5‰ * Tg N/yr SD) -1600 Tg N/yr ‰ =>

320 Tg N/yr (Sed. Denit)!

Isotopic Fractionation

• Two types of isotopic fractionation that cause changes in
isotopic ratios

! Kinetic isotope fractionation:
" One isotope reacts, diffuses, or evaporates faster than the other.

" Can be due to chemical, physical, or biological processes.

" Usually, the lighter isotope reacts or diffuses faster.

" Magnitude of isotope effect is temperature, reaction rate, and
species dependent

! Equilibrium isotope fractionation:
" Exchange reactions in which a single atom is exchanged

between 2 species (with isotopic preference).

" Bidirectional (reversible) chemical reactions

" Temperature dependent

Equilibrium Isotope Effects

Foraminiferal shell Surface seawater

Example: CaCO3 equilibration with surface seawater

CaC16O3 + H2
18O CaC16O2

18O + H2
16O

Equilibrium Isotope Effects

Foraminiferal shell Surface seawater

Example: CaCO3 equilibration with surface seawater

[CaC16O2
18O]*[H2

16O]
K=

[CaC16O3]*[H2
18O]

=
[CaC16O2

18O]/[CaC16O3]

[H2
18O]/[[H2

16O]

= RCaCO3/RH2O

= #equilib (equilibrium fractionation factor) ~ 1.0286 at 25°C

CaC16O3 + H2
18O CaC16O2

18O + H2
16O



Temperature Dependence

This system is used as a

rough paleothermometer:

• Calcite is preserved in

marine sediments.

• #equilib varies as a

function of temperature

(higher value at lower T)

T (°C) = 16.9 - 4.2*("18OCaCO3 - "
18OH2O) + 0.13 *("18OCaCO3 - "

18OH2O)2

From the dependence of #eq on T:

Sedimentary Record of
"18OCaCO3

Changing "18OCaCO3 can reflect changing #(T) but also 

need to account for changing "18OH2O…

Increasing
"18O-CaCO3

Values

Increasing
"18O-H2O and/or

Increasing #eq LGM

Ice Volume Effect on "18OH2O

• Water with low "18O is stored

in ice caps during the glacial

periods, leaving the residual

ocean water enriched in 18O

• Approx. 2/3 of the change in
planktonic "18OCaCO3 is due to

the increase in "18OH2O during

glacial periods, the rest is due to

lowered sea surface temperature

• Additional caveats due to

changes in salinity and “vital”

effects, or non-equilibrium

nature of foram shells

Summary

• Stable isotopic ratios vary widely in nature

• These variations record the results of chemical, physical, and biological

processes

• At equilibrium, isotopes are unequally distributed among molecules or

phases and the distribution is determined by thermodynamics

• Kinetic isotope effects arise from slight differences in the rates of reaction

involving isotopically substituted molecules

• Because of discrimination against heavy molecules, substrates become
enriched in heavy isotopes as a reaction proceeds, and with constant offset ($)

the products also become more enriched


