## Where, Oh, Where has all the Carbon Gone?

Anonymous Student 3/9/06

### The Papers

Revelle, R. and Suess, H., 1957: Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric  $CO_2$  during the Past Decades, *Tellus IX*, 1, p.18-27.

Craig, H., 1969: Abyssal Carbon and Radiocarbon in the Pacific, *Journal of Geophysical Research*, Vol. 74, No. 23, pp. 5491-5506

Stuiver, M., Quay, P., Ostlund, H., 1983. Abyssal Water Carbon-14 Distribution and the Age of the World Oceans, *Science*, Vol. 219, pp. 849-851.

Siegenthaler, U., Sarmiento, J., 1993, Atmospheric carbon dioxide and the ocean, *Nature*, Vol. 365, pp 119-125.

## Radiocarbon: a Quick Review

- <sup>14</sup>C is a radioactive isotope of carbon
- t<sub>1/2</sub>=5730 years
- Produced in the upper atmosphere from nitrogen by cosmic ray produced neutrons:

#### <sup>14</sup>N + n => <sup>14</sup>C + p

Production therefore independent of atmospheric pCO<sub>2</sub>
Decays back to nitrogen by beta decay:

 $^{14}C => ^{14}N + \beta$ 

#### Suess Effect, 1953

14Catm  $\Delta^{14}C_{atm} \Rightarrow \frac{1}{1^{2}C_{natural} + {}^{12}C_{anthro}}$ 

Graphs depicting  $\Delta^{14}$ C % vs. years removed due to copyright restrictions.

#### On the Shoulders of Giants

Arrhenius, S., "On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground" *Philosophical Magazine* **41**, 237-276 (1896)

"some of the atmospheric gases absorb considerable quantities of heat"

"The selective absorption of the atmosphere...is not exerted by the chief mass of the air, but in a high degree by aqueous vapour and carbonic acid, which are present in the air in small quantities"

Arrhenius calculated in this paper that a doubling of  $CO_2$  would cause a temperature rise of 5 °C. Current IPCC estimates have it between 1.5 and 4.5 °C.

#### #1

Revelle, R. and Suess, H., 1957: Carbon Dioxide Exchange Between Atmosphere and Ocean and the Question of an Increase of Atmospheric  $CO_2$  during the Past Decades, *Tellus IX*, 1, p.18-27.

#### Summary Revelle & Suess, 1957

- Pre-Keeling Curve of atmospheric CO<sub>2</sub>
- Assumed Ocean-Atmosphere CO<sub>2</sub> reservoirs as a closed system (no land sink)
- Determined a  $\tau_{atm}$  for CO<sub>2</sub> of ~10 years based on <sup>14</sup>C age of marine materials and the effects of anthropogenic CO<sub>2</sub> on atmospheric <sup>14</sup>C
- The "Revelle Factor"

 $\gamma = r/s * S_0 / A_0 \iff$ R= $\partial pCO_2 / pCO_2 * DIC / \partial DIC$ 

## Effect of $\gamma$ (Revelle Factor) on Atmospheric CO<sub>2</sub> Revelle & Suess, 1957

Figure depicting expected secular increase in the  $CO_2$  concentration of air removed due to copyright restrictions.

Année Géophysique Internationale symbol removed due to copyright restrictions.

#### #2

Craig, H., 1969: Abyssal Carbon and Radiocarbon in the Pacific, *Journal of Geophysical Research*, Vol. 74, No. 23, pp. 5491-5506

## Abyssal Carbon and Radiocarbon in the<br/>PacificCraig, 1969

**Paraphrase:** Using radiocarbon measurements to calculate diffusive and advective fluxes. These fluxes can be used to put real-time into dynamic circulation models of the ocean. **The Toolbox:** Solving the general equation for radioactive nonconservative tracers in the 1-D diffusion-advection model:

Formula removed due to copyright restrictions.

by successively fitting concentration profiles with related tracer classes.

## Stable Conservative (SC) Tracers Craig, 1969

- Salinity and Temperature
- Have the most simplistic dynamics,  $J = \lambda = 0$
- Can be used to compute  $z^* = K/\omega \approx 1 \text{km}$ , the 1-D mixing parameter
- Constraints on K give  $0.3 < \omega < 30 \text{ m/yr}$

Graph depicting schematic salinity profiles in the vertical diffusionadvection model removed due to copyright restrictions.



Formula removed due to copyright restrictions.

A KIE MES

Formula removed due to copyright restrictions.

#### Stable Nonconservative Tracers Craig, 1969

- Total  $CO_2$  and dissolved  $O_2$
- $\lambda = 0, J \neq 0$
- Now we can calculate  $J/\omega = 0.8$  from stable carbon profiles
- Remineralization constraints lead to a rough estimate of

 $\omega = 6 \pm 3 \text{ m/yr}$ 

•  $\tau^{\text{DIC}}_{\text{part.flux}} = 10 * \tau^{\text{DIC}}_{\text{mix}}$ 

Graph depicting  $\Sigma CO_2$ profiles in the Pacific at 31°S [Weiss and Craig, 1968] and 0°-30N [Li et al., 1969] removed due to copyright restrictions.

#### Radioactive Tracers Craig, 1969

- $\lambda \neq 0$ ,  $J \neq 0$ : Use the full diffusionadvection model with previously fixed parameters from the stable tracers
- In the abyss,  $C^{14}$  decay rate balanced by particle input:  $J^* \approx \lambda C^*$
- RNC profiles are fit with a value of  $\lambda/\omega$  and from this, Craig infers a  $\omega = 6.8$  m/yr

#### Conclusions Craig, 1969

- Diffusion-advection calculations from  $\sum CO_2$ , dissolved  $O_2$ , and <sup>14</sup>C give estimates of
  - $-\omega = 7 \text{ m/yr}$
  - $K = 2 \text{ cm}^2/\text{sec}$
- Horizontal flow velocities could not be calculated because  $J^* \approx \lambda C^*$ , thus it cannot be considered a "closed system" to compute a record of elapsed time
- Analytical precision of  $^{14}\mathrm{C}$  needs improvement or  $^{14}\mathrm{C}$  half life is slightly too long for better resolution of  $\omega$
- He<sup>4</sup> & He<sup>3</sup>???

#### #3

Stuiver, M., Quay, P., Ostlund, H., 1983. Abyssal Water Carbon-14 Distribution and the Age of the World Oceans, *Science*, Vol. 219, pp. 849-851.

#### Methods Stuiver, Quay, & Ostlund, 1983

- 2200 <sup>14</sup>C samples taken from Atlantic, Pacific and Indian Oceans
- <sup>14</sup>C mass balances done on basin-wide box models, allowing for heterogeneity in <sup>14</sup>C
- <sup>14</sup>C nearly constant in Antarctic circumpolar waters, providing a great boundary condition
- Transport rates determined based on mass and <sup>14</sup>C balances for Indian and Pacific
- NADW mass transport set at 14 Sv from tracer and geostrophic calculations

Box model of the deep ocean removed due to copyright restrictions.

#### Findings Stuiver, Quay, & Ostlund, 1983

• General decrease in  $\Delta^{14}$ C from Atlantic to Antarctic and from Antarctic to Indian and Pacific

> Graphs depicting average  $\Delta^{14}$ C values of waters below a depth of 1500m for Atlantic, Pacific, and Indian ocean GEOSECS stations removed due to copyright restrictions.

#### Conclusions Stuiver, Quay, & Ostlund, 1983

- Water replacement times:
  - Atlantic: 275 years
  - Indian: 250 years
  - Pacific: 510 years
  - Deep Circumpolar Water: 85 years
  - Mean World Oceans: 500 years
- Pacific mean upwelling rate of 5 m/yr (consistent with Craig, 1969)

#### #4

Siegenthaler, U., Sarmiento, J., 1993, Atmospheric carbon dioxide and the ocean, *Nature*, Vol. 365, pp 119-125.

# Partitioning Carbon Fluxes and<br/>ReservoirsSiegenthaler & Sarmiento, 1993

Figures of Pre-industrial carbon cycle and carbon cycle (1980-89) removed due to copyright restrictions.

Table of budget of annual anthropogenic  $CO_2$  perturbations removed due to copyright restrictions.

## Interhemispheric Concentration Difference and CO<sub>2</sub> sinks

Siegenthaler & Sarmiento, 1993

Graph of  $CO_2$  concentration vs. year (1955-95) removed due to copyright restrictions.

Graph of  $CO_2$  difference NH-SH vs. fossil-fuel emission removed due to copyright restrictions.

- 95% of fossil fuel emissions occur in NH
- SH atm. CO<sub>2</sub> increase lags behind NH
- NH sinks exceed those in the SH

Figure of column inventory of anthropogenic  $CO_2$  in the ocean removed due to copyright restrictions.

Sabine, et al, 2004

- Ocean has taken up about 1/3 of anthropogenic  $CO_2$
- Direct Air-Sea flux measurements of  $CO_2$  provide only limited information on oceanic uptake of anthropogenic  $CO_2$
- Rate limiting step for oceanic CO<sub>2</sub> uptake is the vertical water transport
- Missing sink/ imbalance likely due to soils and vegetations have accumulated carbon due to anthropogenic CO<sub>2</sub> or nitrogen fertilization