
7. Potential vorticity and invertibility in the shallow water equations 

Consider a layer of strictly incompressible fluid on a level surface, as illustrated 

in Figure 7.1. The mean depth of the fluid is H with perturbations to the depth 

denoted by η. 

Since the fluid is incompressible, mass continuity gives 

∂u ∂v ∂w 
+ + = 0. (7.1)

∂x ∂y ∂z 

We shall assume that all the motions of interest are hydrostatic, so that inte

gration of the hydrostatic equation gives 

p = p0 + ρg(H + η − z), (7.2) 

where p0 is the atmospheric pressure and ρ is the fluid density. At the surface of 

the fluid, 

dη 
w = . (7.3)

dt 

The inviscid momentum equations may be written, with the aid of (7.2), as 

du ∂η 
= −g + fv,  (7.4)

dt ∂x 
dv ∂η 

= −g − fu.  (7.5)
dt ∂y 

Note from (7.2) that the horizontal pressure gradient acceleration is independent of 

depth in the fluid, as reflected in (7.4) and (7.5). So (7.4) and (7.5) show that if 
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at the initial time, u and v are independent of depth, they will remain so forever. 

We shall assume that u and v are depth-independent. This means that the mass 

continuity equation, (7.1), can be integrated over the local depth of the fluid to give 

∂u ∂v dη
(H + η) + + = 0, (7.6)

∂x ∂y dt 

in which we have applied (7.3). 

Given that u and v are independent of depth, (7.4) and (7.5) may be expressed 

in the alternative form 

∂u ∂B − (f + ζ)v = − , (7.7)
∂t ∂x 
∂v ∂B

+ (f + ζ)u = − , (7.8)
∂t ∂y 

where ζ is the relative vorticity, 

∂v ∂u 
ζ ≡ − , (7.9)

∂x ∂y

and B is the Bernoulli function: 

1 
B ≡ gη + (u 2 + v 2). (7.10)

2 

If B is eliminated by cross differentiating (7.7) and (7.8), the result is a vorticity 

equation: 

dζ ∂u ∂u
+ (f + ζ) + = 0, (7.11)

dt ∂x ∂y 
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showing that vertical stretching is the only source of vorticity in the shallow water 

system. 

Now the horizontal divergence, 

∂u ∂v 
+ ,

∂x ∂y

may be eliminated between (7.6) and (7.11) to arrive at the shallow water potential 

vorticity equation: 

dq 
= 0, (7.12)

dt 

with 

f + ζ 
q ≡ . (7.13)

H + η 

If the flow velocity and η are related by some condition, then clearly (7.12), (7.13) 

constitute a closed system. 

One example in which q and v are strictly related to one another is steady 

flow. First, note that the mass continuity equation, (7.6), can be written in the 

alternative form 

∂ ∂
[u(H + η)] + [v(H + η)] = 0, (7.14)

∂x ∂y 

in the case of steady flow. Then we may define a mass streamfunction, ψ, such that 

∂ψ 
u(H + η) ≡ −  ,

∂y (7.15)
∂ψ 

v(H + η) ≡ ,
∂x

which clearly satisfies (7.14).
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Now the steady forms of the momentum equations, (7.7) and (7.8), are 

∂B
(f + ζ)v = , (7.16)

∂x 
∂B

(f + ζ)u = − , (7.17)
∂y 

or using (7.15) and (7.13), 

∂ψ ∂B 
q = , (7.18)
∂x ∂x 
∂ψ ∂B 
q = . (7.19)
∂y ∂y 

At the same time, the steady form of the potential vorticity equation, (7.12), 

is 

u
∂q 

+ v
∂q 

= 0. (7.20)
∂x ∂y 

Multiplying (7.20) by H + η and using (7.15) gives


− 
∂ψ ∂q 

+ 
∂ψ ∂q 

= 0,
∂y ∂x ∂x ∂y 

or 

J(q, ψ) = 0, (7.21) 

where J is the Jacobian operator. The direct implication of (7.21) is that q = q(ψ). 

Given this conclusion, it is clear from (7.18) and (7.19) that B = B(ψ). Thus if q(ψ) 

is known, then B(ψ) can be found from (7.18) and (7.19), and (7.10) and (7.13) can 

then be solved for η, u, and  v. This is an example of inversion, and for this case it 

is exact. 
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In time-dependent flows, it is necessary to make an approximation to the mo

mentum equations to recover invertibility. The most commonly used approximation 

in geophysical flows is to assume that the horizontal divergence, or its time ten

dency, is small compared to the vertical component of vorticity; this approximation 

filters sound waves and inertia-gravity waves from the equations. 

We start by differentiating (7.4) with respect to x and (7.5) with respect to y 

and summing the result to arrive at the divergence equation: 

dD 
= −g∇2η + (f + ζ)ζ − βu − S2 ,	 (7.22)

dt 

where 

∂u ∂v 
D ≡ + ,

∂x ∂y

∂v ∂u 
ζ ≡ − ,

∂x ∂y 
df 

β ≡	 ,
dy

and 

( )2 ( )2 ( )2 ( )2 

S2 ≡	
∂u 

+ 
∂u 

+ 
∂v 

+ 
∂v 

. 
∂x ∂y ∂x ∂y 

S is the net deformation in the flow.


27




The nonlinear balance equation is obtained by making the approximation 

dD | | � |(f + ζ)ζ|, (7.23)
dt 

so that 

g∇2η � (f + ζ)ζ − βu − S2 . (7.24) 

This relates the instantaneous distribution of η to the instantaneous distribution of 

velocity in the system. 

Now to be consistent with the approximation (7.23), the velocities that appear 

on the right side of (7.24) should be dominated by their nondivergent components, 

allowing us to rewrite (7.24) as 

( )2 ( )2 ( )2 

g∇2η � (f + ∇2ψ)∇2ψ + β
∂ψ − 2 

∂2ψ − 
∂2ψ − 

∂2ψ
, (7.25)

∂y ∂y∂x ∂y2 ∂x2 

where ψ is now the velocity streamfunction, defined such that 

∂ψ 
u = − ,

∂y (7.26)
∂ψ 

v = . 
∂x 

At the same time, the potential vorticity equation (7.12) with (7.13) can be 

written 

∂q 
= −J(ψ, q). (7.27)

∂t 
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The two equations (7.27) and (7.24) constitute a closed system for ψ and η. Po

tential vorticity is just advected around, according to (7.27), and at each time the 

streamfunction and depth η can be found from (7.25) and 

f + ∇2ψ 
q = . (7.28)

H + η 

It should be mentioned here that the approximation (7.23) does not imply that 

w = 0 from mass continuity; it is simply a scaling approximation appropriate to 

the divergence equation. In fact, the system of equations (7.27), (7.28), and (7.25) 

directly imply a nonzero horizontal divergence, because in general the evolution 

of the system will give a nonzero charge in f + ∇2ψ, the vorticity. But from the 

vorticity equation, (7.11), vorticity can only change if there is nonzero divergence. 

Thus the divergence and the vertical velocity can be diagnosed by solving (7.11) 

once the time rate of change of vorticity is known (or by solving (7.6) once the time 

rate of change of η is known.) This is why the system is referred to as a quasi-

balanced system: Exact balance is degenerate in the sense that the evolution of the 

flow cannot be calculated. 

In summary, a suitable balance approximation allows one to calculate the evo

lution of a quasi-balanced flow according to this schema: 

1. Prescribe initial flow and/or η that satisfies the balance condition (7.25, in this 

case). 

2. Calculate the distribution of q using its definition (7.28). 

3. Find q at the next time step by solving the potential vorticity equation, (7.27). 
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4. Invert the q distribution using the definition of q and a balance condition (7.28 

and 7.25, in this case) to find the velocity and mass distribution. (Note, how

ever, that boundary conditions must be prescribed to carry out the inversion.) 

5. Go back to 3. 

Note that this scheme is highly analogous to the solution of the vorticity equation 

for strictly two-dimensional flow: 

∂ζ 
= −J(ψ, ζ), (7.29)

∂t 

ζ = ∇2ψ. (7.30) 

Here again, vorticity is simply advected around by the flow, and the flow is recovered 

at each time step by inverting (7.30) subject to boundary conditions. The difference 

is that the system (7.29), (7.30) for two-dimensional flow is exact, while quasi-

balance systems like (7.25), (7.27), and (7.28) rely on a balance approximation like 

(7.23). But clearly, the evolution of quasi-balanced flows is strongly analogous to 

the evolution of two-dimensional flows. 

Illustration of balance and invertibility principles: the Rossby adjustment problem 

Consider a two-dimensional slab of incompressible fluid, which at time t = 0  has  a  

rectangular cross section (Figure 7.2). The fluid is contained on an f plane (f = 

constant). At time t = 0, the fluid is released and allowed to evolve in time. We 

will approximate the flow as inviscid. What happens? 
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Figure 7.2 

Clearly, the fluid will spread horizontally under the influence of gravity, ac

quiring velocities in the y direction through Coriolis accelerations. Gradually, the 

Coriolis accelerations acting on these velocities in the y direction will begin to bal

ance the pressure gradient accelerations in the x direction. 

We can find steady, two-dimensional solutions of the shallow water equations 

by assuming that potential vorticity is conserved and by solving the x-momentum 

equations for steady flow. This is a state toward which the system presumably 

evolves. 

The potential vorticity, from (7.13), is 

f + ∂v 

q = ∂x , (7.31)
η + H 

where v is the velocity in the y direction. At t = 0,  this  is  

f 
q = , (7.32)

H 

and since q is conserved, it must equal this value at all times. Equating (7.31) and 

(7.32) gives 

∂v η 
= f . (7.33)

∂x H 
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The momentum equations in the x direction is


du ∂η 
= −g + fv.  (7.34)

dt ∂x 

In steady equilibrium, 

du ∂u ∂u ∂u 
= + u + v = 0, (7.35)

dt ∂t ∂x ∂y 

since the flow is steady and two-dimensional (∂/∂y = 0) and, we presume, u = 0.  

Thus the final state is geostrophically balanced: 

∂η 
g = fv,  (7.36)
∂x 

and eliminating v between (7.34) and (7.36) gives an ordinary differential equation 

for η: 

g d2η f − η = 0. (7.37)
f dx2 H 

The solution of this equation that satisfies the condition H + η = 0  at  x = ±L 

(where L is, by definition, the distance from the symmetry axis to which the fluid 

spreads) is 

cosh x 

η = −H LD , (7.38)
cosh L 

LD 

where LD is the deformation radius, defined 

√ 

LD ≡ 
gH 

. (7.39)
f 

This is an important scale in all quasi-balanced flows. 
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Now we can find the scale L to which the fluid spreads by demanding that mass 

be conserved: ∫ L 

(H + η)dx = HL0.	 (7.40) 
0 

The right-hand side of (7.40) is the half-volume of the initial state, while the left 

side is the half-volume of the final state. 

Performing the integration in (7.40) after substituting (7.38) gives a transcen

dental equation for L: 

L L L0− tanh = .	 (7.41)
LD LD LD 

Given L0, this allows us to calculate L. Note that all length scales are now effectively 

normalized by the deformation radius. 

It is instructive to look at solutions to (7.41) in certain limiting cases: 

1.	 L0/LD � 1: The initial horizontal scale is “large.” Since L > L0, and  

lim tanh x = 1, (7.41) becomes 
x→∞ 

L L0− 1 → ,
LD LD 

or 

L → L0 + LD.	 (7.42) 

The fluid spreads approximately one deformation radius beyond its initial scale. 
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2. L0/LD � 1: The initial horizontal scale is “small.” In this case, if we assume 

that L/L0 � 1, the tanh term in (7.41), expanded to second order in L/LD, is  

L L 1 
( 
L 
)3 ( 

L 
)5 

tanh = − + O 
LD LD 3 LD LD


and, therefore,


L → (3L0)1/3LD 
2/3 
. (7.43) 

The fluid spreads to a scale that represents a geometric average of the defor

mation radius and the initial scale, weighted toward the former. 

It is worth noting that when L0 = LD, the solution to (7.41) is L = 1.96LD, 

which is much closer to the large-scale asymptotic limit given by (7.42). 

This example is one of geostrophic adjustment in which an initially highly un

balanced flow adjusts to a balanced state. Note that in the large-scale limit, the 

mass distribution hardly changes at all, but the v velocity component undergoes a 

large adjustment near the edges of the block. On the other hand, in the limit of 

a small-scale initial length, the mass field undergoes a large adjustment while the 

velocities remain small. 

34




MIT OpenCourseWare
http://ocw.mit.edu 

12.803 Quasi-Balanced Circulations in Oceans and Atmospheres 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



