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20. The Charney-Stern Theorem 

The Eady problem of baroclinic instability described in section 19a was shown to 

be remarkably similar to the Rayleigh instability of barotropic flow described in 

Chapter 18. Both problems can be described in terms of phase-locked, counter-

propagating Rossby waves. In section 18.2, we presented Rayleigh’s and Fjørtoft’s 

theorems for necessary conditions for the instability of phase-locked barotropic 

Rossby waves. In 1962, Jule Charney and Melvyn Stern published a generaliza

tion of these theorems to the case of three-dimensional, quasi-geostrophic flow. 

We begin with equation (9.10) for the conservation of pseudo-potential vorticity, 

which for an inviscid , adiabatic flow may be written 

∂ 1 ∂ 1 ∂ϕ 
+ Vg · ∇  [ ∇2ϕ + βy + f0 ] = 0. (20.1)

∂t f0 ∂p S ∂p 

Now consider the case of infinitesimal perturbations to a background zonal flow 

that varies only with latitude and altitude: 

ϕ = ϕ(y, p) +  ϕ′(x, y, p, t), 

Vg = u(y, p)̂i + Vg
′ (x, y, p, t), (20.2) 

qp = qp(y, p) +  qp
′ (x, y, p, t). 

Substituting (20.2) into (20.1) and dropping terms that are quadratic in the per

turbation variables gives 

∂ 
+ u

∂ 
[
1 ∇2ϕ′ + f0 

∂ 1 ∂ϕ′ 
] +  vg 

′ ∂qp = 0. (20.3)
∂t ∂x f0 ∂p S ∂p ∂y 
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∣ ∣	 ∣ ∣ 
∫ [ ] 

Charney and Stern looked for modal solutions of the form 

ϕ′ = Φ(y, p)e ik(x−ct),	 (20.4) 

where Φ is a complex function of y and p and c is a complex phase speed. Substi

tution of (20.4) into (20.3) gives 

∂2Φ
+ f0

2 ∂ 
( 

1 ∂Φ
) 

+ Φ  

( 
∂qp/∂y − k2 

) 

= 0. (20.5)
∂y2 ∂p S ∂p u − c 

As in section 18.2, we multiply by the complex conjugate of Φ and integrate over a 

domain that is infinite in y but bounded by rigid plates in p: 

∫ ∞ ∫ p0 
[ 

Φ∗ ∂
2Φ ∂ 

( 
1 ∂Φ

) 
2 

( 
∂qp 1 

)] 

−∞ p1 
∂y2 

+ f0
2Φ∗ 

∂p S ∂p 
+ |Φ|

∂y u − c 
− k2 dpdy = 0, (20.6) 

where p1 and p0 are the pressures at the top and bottom boundary, respectively. 

We assume that as y → ±∞, the geopotential perturbations or their meridional 

gradients vanish. Integrating (20.6) by parts and making use of this boundary 

condition gives 

∫ ∫ {∣ ∣2 ( ) ∣ ∣2}∞ p0	 ∣ ∣ ∂q /∂y f2 ∣ ∣ ∣ ∂Φ ∣ + k2 − p |Φ|2 + 0 ∣ ∂Φ ∣ dy dp 
−∞ p1 

∂y u − c S ∂p 

∞ Φ∗ ∂Φ ∣∣ p0 

+f0
2 ∣ dy = 0.	 (20.7) 

−∞ S ∂p p1 

The last term in (20.7) involves geopotential perturbations at the two bound

aries. For these, we use the Eady boundary condition given by (11.1). Linearizing 

this about the background state and using (20.4) gives 

∂Φ α ∂θ − Φ = 0  on  p = p0, p1.	 (20.8)
∂p f0θ(u − c) ∂y 
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∫ ∫ 

∣ 

Substituting this into the last term of (20.7) gives
[ ( ( ) )∞ p0 ∣ f2 ∣∣ 2 ∣ 2 ∣ ∂Φ ∣ 
k2 − 

∂qp/∂y |Φ|2 + 0 ∣ ∂Φ ∣ ∣ ∣ + ∣ ∣ dp 
−∞ p1 

∂y u − c S ∂p 

αf0 
∂θ ∣p0 

] 

− ∂y |Φ|2∣∣ dy = 0. (20.9)
θS(u − c) p1 

Since c is in general a complex number, the real and imaginary parts of (20.9) must 

be satisfied independently. In particular, the imaginary part of (20.9) is 

∫ ∞ [∫ ( ) ∂θ ] 

ci

p0 ∂qp/∂y |Φ|2 dp + 
αf0 ∂y |Φ|2 ∣∣ p0 

dy = 0  (20.10) 
−∞ p1 

|u − c|2 θS|u − c|2 p1 

From this expression, it can be seen that for exponentially growing normal 

modes (ci > 0), one or more of the following must be true: 

1. The meridional gradient of pseudo-potential vorticity, ∂qp∂y, changes sign in 

the domain; 

2. The meridional temperature gradient, ∂θ/∂y, changes sign along one or both 

boundaries; 

3. The meridional temperature gradient, ∂θ/∂y, at the lower boundary (p0) has  

the same sign as  ∂θ/∂y at the upper boundary (p1) and/or the opposite sign 

of the interior pseudo potential vorticity gradient, ∂qp/∂y; 

4. The meridional temperature gradient, ∂θ/∂y, at the upper boundary (p1) has  

the same sign as either or both the meridional temperature gradient at the 

lower boundary and the interior potential vorticity gradient. 

In the Eady model, ∂qp/∂y = 0 but the temperature gradient has the same sign 

at both boundaries, so the Charney-Stern necessary condition is satisfied. In the 
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Charney model, there is no temperature gradient at the upper boundary, but the 

temperature gradient at the lower boundary has the opposite sign as the interior 

pseudo-potential vorticity gradient, β̂, so once again the necessary condition for 

instability is satisfied. 

The Charney-Stern theorem may be interpreted as the requirement that at 

least two, counter-propagating (relative to the background flow) trains of Rossby 

waves must be supported by the fluid flow in order the normal mode instability to 

occur. One can also derive a Fjørtoft condition by taking the real part of (20.9); 

this shows, as in the Rayleigh instability problem, that the background flow must 

be configured so that the counter-propagating wave trains can become phase locked. 
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