
Chapter 12 

Vorticity and quasi-geostrophy


Supplemental reading: 

Holton (1979), chapters 4, 6 

Houghton (1977), sections 8.4–6 

Pedlosky (1979), chapter 2, sections 3.10, 3.12, 3.13 

12.1 Preliminary remarks 

In the preceding chapter we saw that β plays a major role in large-scale 
motions of the atmosphere. We also referred to β as the gradient of that 
contribution to a fluid’s vorticity due to the Earth’s rotation. We will now 
briefly consider what exactly is vorticity. 

Recall that in particle mechanics, conservation of energy and momentum 
both play important roles. In a fluid, however, momentum is not in general 
conserved because of the presence of pressure forces. To be sure, in sym­
metric circulations, zonal angular momentum is conserved (in the absence of 
friction), but then ∂p� = 0 by definition. The question we will consider is 

∂x 

whether there is anything a fluid conserves instead of momentum. 

12.1.1 Interpretation of vorticity 

A clue is obtained from the following ‘quasi-fluid’ equation: 
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∂�u 1 

∂t 
= −

ρ
�p, (12.1) 

where ρ = const. Taking the curl of (12.1) eliminates �p and leaves us with 

∂ 
∂t

(�× �u) = 0. (12.2) 

In this ‘quasi-fluid’ �× �u could be considered as conserved. �× �u is called 
vorticity. Vorticity can be interpreted as twice the instantaneous local rota­
tion rate of an element of fluid. This is easily seen in two-dimensional flow. 
With reference to Figure 12.1, 

Figure 12.1: A rectangular element of fluid at t = 0 is deformed and rotated by the fluid 
flow into the rhomboidal element at t = dt. 

∂u2
d = dx1dt 

∂x1 

d ∂u2
Θ1 = = dt. 

dx1 ∂x1 

Similarly, 

∂u1
Θ2 = dt. −

∂x2 
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Now d (Θ1 + Θ2) ≡ 2dα = ∂u2 ∂u1 , which is what we set out to show. 
dt	 dt ∂x1 

−
∂x2 

The real equations of motion are more complicated than (12.1), but as 
we shall see a quantity closely related to vorticity is, in fact, conserved in 
inviscid, adiabatic fluids. 

12.2	 Vorticity in the shallow water 

equations 

Let us first consider the shallow water equations introduced in Chapter 4. 
This time, however, we will consider the nonlinear shallow water equations. 
We will retain the β-plane geometry. 

∂u ∂u ∂u 
+ u + v

∂y 
− fv = −gZx	 (12.3) 

∂t ∂x 

∂v ∂v ∂v 
∂t 

+ u
∂x 

+ v
∂y 

+ fu = −gZy	 (12.4) 

DZ 
Z� · �u +	

Dt 
= 0. (12.5) 

To eliminateZx and Zy in (12.3) and (12.4) (Z is the counterpart of pressure), 
we differentiate (12.3) with respect to y, and (12.4) with respect to x, and 
subtract the resulting equations: 

∂2u ∂u ∂u ∂2u ∂v ∂u 
+ + u + 

∂t∂y	 ∂y ∂x ∂x∂y ∂y ∂y 

∂2u ∂v ∂2Z 
+ v

∂y2 
− f 

∂y 
− βv = −g

∂x∂y 
(12.6) 

∂2v ∂u ∂v ∂2v ∂v ∂v 
+ + u + 

∂t∂x ∂x ∂x ∂x2 ∂x ∂y 

∂2v ∂u ∂2Z 
+ v

∂x∂y 
+ f 

∂x 
= −g

∂x∂y 
(12.7) 



� � � � � � 

� � � � 

� � 

� � 

248 Dynamics in Atmospheric Physics 

∂ ∂v ∂u ∂ ∂v ∂u ∂ ∂v ∂u 
∂t ∂x 

−
∂y 

+ u
∂x ∂x 

−
∂y 

+ v 
∂y ∂x 

−
∂y 

∂u ∂v ∂u ∂v ∂u 
+βv + f + + 

∂x ∂y ∂x ∂x 
−
∂y 

∂v ∂v ∂u 
+ 
∂y ∂x 

−
∂y 

= 0 (12.8) 

or 

Dζ 
Dt 

+ βv + f� · �u + ζ� · �u = 0, (12.9) 

∂v ∂u where ζ = vertical component of vorticity = 
∂x 

−
∂y
. 

Equation 12.9 may be rewritten 

D 
Dt 

(ζ + f) + (ζ + f)� · �u = 0. (12.10) 

The quantity ζ + f is called absolute vorticity while ζ is called relative vor­
ticity. (Why ?) Using (12.5), (12.10) becomes 

D ζa DZ 
(ζa) − = 0 

Dt Z Dt 
or 

D ζa 
= 0, (12.11) 

Dt Z 

where ζa = ζ + f . The quantity ζa/Z, known as absolute potential vorticity, 
is conserved by the shallow water equations. The existence of Rossby waves 
is closely related to the conservation of vorticity or potential vorticity. Recall 
that the shallow water equations allow both gravity waves and Rossby waves. 
If, however, we put a rigid lid on the fluid we will eliminate gravity waves. 
In such a situation, 

DZ 
= 0 

Dt 
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and (12.11) becomes 

Dζa D ∂v ∂u 
Dt 

= 
Dt ∂x 

−
∂y 

+ f = 0. (12.12) 

Equation 12.5 becomes 

� · �u = 0 (12.13) 

which implies the existence of a stream function such that 

u = −ψy (12.14) 

v = ψx. (12.15) 

12.2.1 Filtered Rossby waves 

If we assume a constant basic flow, uo, and linearizable perturbations on this 
flow, Equation 12.12 becomes 

∂ ∂ 
+ u0 (�2ψ + f) + ψxβ = 0. (12.16) 

∂t ∂x 

If we assume further that the perturbations are of the form 

sin �y eik(x−ct) 

then (12.16) becomes 

ik(u0 − c)(−k2 − �2)ψ + ikψβ = 0 

or 

β 
c = u0 − , (12.17) 

k2 + �2 

which is simply the equation for non-divergent Rossby waves. The mechanism 
of such waves is shown in Figure 12.2. Recall that ζa consists in both relative 
vorticity and f ; f increases with y. Now if ζ = 0 at y = y0 and an element 
is displaced to a positive y, a negative ζ (clockwise rotation) will be induced 
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Figure 12.2: The position of the three-point vortices A,B and C at three successive 
times. Initially colinear and positioned along an isobar, B is displaced upwards, producing 
velocities at A and C which move them as shown. The vorticity induced on A and C 
produces a velocity at B tending to restore it to its original position. After Pedlosky 
(1979). 

to counteract the increasing f. The result will be a disturbance whose phase 
propagates westward relative to u0. 

We next consider what happens if we restore a free surface. If we linearize 
(12.11) about a constant u0 basic state we get 

� �� � � �

∂ ∂ ∂v� ∂u� f ∂ ∂ 
∂t 

+ u0
∂x ∂x 

−
∂y 

+ v�β −
Z0 ∂t 

+ u0
∂x 

Z � = 0. (12.18) 

Now the linearization of Equations 12.3 and 12.4 could be used to relate 
u� and v� to Z �, but the resulting dispersion relation would be cubic in c. 
However, from the exercises we know that u� and v� in a Rossby wave are 
approximately geostrophic; that is, 

v� = 
g
Zx

� (12.19) ∼
f 

and 

u� = 
g
Zy

� . (12.20) ∼ −
f 
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Let’s see what happens if we substitute (12.19) and (12.20) into (12.18): 

� �� �	 � �

∂ ∂ g	 g f ∂ ∂ 
+ u0 (Z � + Z � ) + βZ � + u0 Z � = 0. (12.21) 

∂t ∂x f xx yy f x − Z0 ∂t ∂x 

Again, assuming solutions of the form 

sin �y eik(x−ct) , 

(12.21) becomes 

g 
(k2 gβ f −(u0 − c)

f 
+ �2) +

f 
−
Z0 

(u0 − c) = 0 

or 

f2 

−(u0 − c)(k2 + �2) + β −
gZ0 

(u0 − c) = 0 

or 

β 
c = u0 − 

f2 ,	 (12.22) 
k2 + �2 + 

gZ0 

which is precisely the dispersion relation for divergent Rossby waves1 . We 
seem to have found a way of exploiting geostrophy to suppress gravity waves 
while retaining the time evolution associated with Rossby waves. Our next 
step is to make this procedure systematic. 

12.3	 Quasi-geostrophic shallow 

water theory 

Once one knows what one is after, scaling affords a convenient way to make 
things systematic. It will become transparently clear that if one does not 
know what one wants a priori, scaling is not nearly so effective! 

1Note that in the non-divergent case, we automatically have a streamfunction, so that 
there is no need for a quasi-geostrophic approximation in order to obtain (12.17). Equiv­
alently, the non-divergent case does not have surface gravity waves to filter out. 
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Let us go through the ritual of scaling the dependent and independent 
variables in Equations 12.3–12.5 as follows: 

u = Uu� 

v = Uv� 

x = Lx� 

y = Ly� 

Z Z̄ Z, and ˜ = HZ �≡ 
���� + ˜ Z 

mean depth 

f = f + βy = f + βLy� 

t = T t�. 

In terms of dimensionless variables (12.3)–(12.5) become 

U ∂u� U2 
� 

∂u� ∂u�
� 

+ u� + v�
T ∂t� L ∂x� ∂y� 

βL H − fU 1 + y� v� = −g Zx
�
� 

f L 

or 

1 ∂u� U 
� 

∂u� ∂u�
� � 

βL 
� 

gH 
fT ∂t� 

+ 
fL 

u�
∂x� 

+ v�
∂y� 

− 1 + 
f
y� v� = −

fUL 
Z �. (12.23) 

Similarly, 

1 ∂v� U 
� 

∂v� ∂v�
� 

+ u� + v�
fT ∂t fL ∂x� ∂y� 

βL gH 
+ 1 + 

f
y� u� = −

fUL 
Zy

�
� (12.24) 

and 

� �� � � �

HZ � ∂u� ∂v� HL ∂Z � H ∂Z � ∂Z �
1 + ¯ + + ¯ + ¯ u� + v� = 0. (12.25) 

Z ∂x� ∂y� ZTU ∂t� Z ∂x� ∂y� 

We wish to capitalize on the following to simplify our equations: 
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(i) The dominance of the Coriolis force;


(ii) The approximate validity of geostrophy;


(iii) The small excursions of f from its mean value.


Item (ii) leads to taking 

H 
fU = g 

L 
or 

fUL 
H = . (12.26) 

g 

Item (i) leads to our taking 

U 
R0 = 

fL 
� 1 (12.27) 

and 

1 
R0T = 

fT 
� 1. (12.28) 

For simplicity we will take 

R0 = R0T = �. (12.29) 

Item (iii) leads us to write 

βL 
= �β �. (12.30) 

f 

We may now rewrite (12.26) as 

f2L2 

H = � , 
g 

in which case the non-dimensional parameters in (12.25) become 

H f2L2 

¯ ¯Z gZ 

and 
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H L f2L2 R0T f2L2 

¯ ¯ ¯Z TU gZ R0 gZ 

12.3.1 Rossby radius 

Now let us define a distance R by the following relation 

f2L2 L2 

= 
gZ̄ R2 

or 

gZ̄
R2 = ;

f2 

R is known as the Rossby radius. 

12.3.2 Rossby number expansion 

We will take 

L2 = R2 . (12.31) 

As a result of the above, we may rewrite (12.23)–(12.25) as follows: 

∂u� ∂u� ∂u�
� 

∂t� 
+ u�

∂x� 
+ v�

∂y� 
− (1 + �β �y�)v� = −Zx

�
� (12.32) 

∂v� ∂v� ∂v�
� 

∂t� 
+ u�

∂x� 
+ v�

∂y� 
− (1 + �β �y�)u� = −Zy

�
� (12.33) 

and 

∂u� ∂v� ∂Z � ∂Z � ∂Z �
(1 + �Z �) + + � + u� + v� = 0. (12.34) 

∂x� ∂y� ∂t� ∂x� ∂y� 

We now expand all our variables in powers of � : 

u� = u0 + �u1 + . . .


v� = v0 + �v1 + . . . (12.35)


Z � = Z0 + �Z1 + . . . .
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We next substitute (12.35) into (12.32)–(12.34) and order our equations by 
powers of �. At zeroth order we have 

−v0 = −Z0,x� (12.36) 

u0 = −Z0,y� (12.37) 

and consistent with (12.36) and (12.37) 

∂u0 ∂v0 
+ = 0. (12.38) 

∂x� ∂y� 

Equations 12.36 and 12.37 are simply the geostrophic relations and as such 
they tell us nothing about time evolution. Equation 12.38 tells us that hori­
zontal divergence is O(�). 

At first order in � we have 

∂u0 ∂u0 ∂u0 

∂t� 
+ u0 

∂x� 
+ v0 

∂y� 
− v1 − β �y�v0 = −Z1,x� (12.39) 

∂v0 ∂v0 ∂v0 
+ u0 + v0 + u1 − β �y�u0 = −Z1,y� (12.40) 

∂t� ∂x� ∂y� 

∂u1 ∂v1 ∂Z0 ∂Z0 ∂Z0 
+ + + u0 + v0 = 0. (12.41) 

∂x� ∂y� ∂t� ∂x� ∂y� 

We next differentiate (12.39) with respect to y�, and (12.40) with respect to 
x�, and subtract the results just as in Section 12.2 to obtain 

� �� � � �

∂ ∂ ∂ ∂v0 ∂u0 ∂u1 ∂v1 

∂t� 
+ u0

∂x� 
+ v0

∂y� ∂x� 
−
∂y� 

+ β �y� + 
∂x� 

+ 
∂y� 

∂v0 ∂u0 ∂u0 ∂v0 ∂v0 ∂u0 
+ β �y� + + + = 0. 

∂y� ∂x� ∂x� ∂y� ∂x� 
−
∂y� 

� �� � � �� � 
=0 =0 

(12.42)
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Using (12.41) we finally get2 

D

Dt
 0 

∂v0 ∂u0 

∂x

−

∂y


D

+ β �y� −
 Z0 = 0. (12.43) 

Dt
 0 

Equation 12.43 is simply (12.11) where the advective velocities and the rel­
ative vorticity are evaluated geostrophically. Equations 12.36, 12.37, and 
12.43 completely determine the zeroth order fields, but note that we had to 
go to first order in � to get (12.43). Not surprisingly, the evolution of quasi­
geostrophic flow is completely determined by the vorticity equation. (Note 
that f ζ .) 

12.4	 Quasi-geostrophy in a stratified, 

compressible atmosphere 

Given the close relation we have noted in Chapter 11 between the shallow 
water equations and the equations for internal waves in a deep atmosphere, 
we may reasonably anticipate that the quasi-geostrophic equations for a deep 
atmosphere will be similar to those we have just obtained. 

Our equations of motion in log −p coordinates are 

∂ ∂ ∂ ∂ 
+ u + v + w∗ u − fv = −Φx (12.44) 

∂t ∂x ∂y ∂z∗ 

∂ ∂ ∂ ∂ 
∂t 

+ u
∂x 

+ v
∂y 

+ w∗ 
∂z∗ 

v + fu = −Φy (12.45) 

∂u ∂v ∗ ∂ ∗ 

+ �z (e−z w∗) = 0 (12.46) +

∂x ∂y ∂z∗

∂Φ 
= RT	 (12.47) 

∂z∗ 

∂ ∂ ∂
 ∂T RT

T + w∗ =
 0. (12.48)
+ u +
 v
 +


∂t ∂x ∂y ∂z∗ cp 

If 

2The notation D 
Dt 0 

refers to the standard substantial derivative where the advecting 
velocities are evaluated geostrophically. 
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w∗ = Ww� 

u, v = Uu�, Uv� 

z∗ = Hz� 

x, y = Lx�, Ly� 

then we know from Section 12.3 that 

H 
W ∼

L 
U� 

because the geostrophic divergence ∼ 0. Hence the vertical advections will be 
at least a factor � smaller than the horizontal advections. However, the latter 
are already O(�) compared to the Coriolis term. Thus vertical advections will 
not enter our equations at either zeroth or first order in �, and Equations 12.44 
and 12.45 are essentially identical to our shallow water equations for u and 
v. Thus at zeroth order 

−f0vG = −Φx (12.49) 

−f0uG = −Φx (12.50) 

(where f = f0 + βy). Similarly, to first order 

� �� � � �

∂ ∂ ∂ ∂vG ∂uG ∂u1 ∂v1 

∂t 
+ uG

∂x 
+ vG

∂y ∂x 
− 

∂y 
+ f + f0 

∂x 
+ 
∂y 

= 0. (12.51) 

(N.B. we are retaining dimensional variables.) 
Equation 12.46 relates w∗ to 

∂u1 ∂v1 
+ . 

∂x ∂y 

Equation 12.47 allows us to rewrite (12.48) as 

∂ ∂ ∂ ∂Φ ∂T RT 
+ u + v + w∗R + = 0. (12.52) 

∂t ∂x ∂y ∂z∗ ∂z∗ cp 

By analogy with our shallow water analysis we can, to lowest order, replace 
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∂ ∂ ∂ 
+ u + v 

∂t ∂x ∂y 

in (12.52) with 

∂ ∂ ∂ 
+ uG + vG . 

∂t ∂x ∂y 

Also, we can replace 

∂T RT 
+ 

∂z∗ cp 

with its horizontal average 

∂T̄ RT̄
+ 

∂z∗ cp 

(Why?).

Thus we have


∂ ∂ ∂ ∂Φ(
∂t 

+ uG ∂x 
+ vG ∂y

)
∂z∗ w∗ = ¯ ¯ . (12.53) 

R( dT + RT )
dz∗ cp 

Equations 12.53 and 12.46 then give 

⎧ 
∗ ∂ ∂ ∂ ∂Φ 

⎫ 
∂u1 

+ 
∂v1 

= e z 
∗ ∂ ⎨ e−z (

∂t 
+ uG 

¯
∂x 

+ 
¯

vG ∂y
)

∂z∗ 
⎬ 
. (12.54) 

∂x ∂y ∂z∗ ⎩ R( dT + RT ) ⎭
dz∗ cp 

If we let 

dT̄ RT̄
S = R + ,

dz∗ cp 

(12.54) becomes 

∂u1 ∂v1 

� 
∂ ∂ ∂ 

�� 
∗ ∂ 

� 
e−z ∗ ∂Φ

�� 

+ = + uG + vG e z 
∂x ∂y ∂t ∂x ∂y ∂z∗ S ∂z∗ 

1 ∂uG ∂ ∂vG ∂ ∂Φ 
+ ( + ) . (12.55) 
S ∂z∗ ∂x ∂z∗ ∂y ∂z∗ 

=0 by geostrophy 
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With (12.55), (12.51) becomes 

� �� �

∂ ∂ ∂ ∂uG ∂uG


∂t 
+ uG

∂x 
+ vG

∂y ∂x 
− 

∂y 
+ f


� �� � �� 
∂ ∂ ∂ ∗ ∂ f ∗ ∂Φ 

+ + uG + vG e z e−z = 0 
∂t ∂x ∂y ∂z∗ S ∂z∗ 

or 

∂ ∂ ∂ 
+ uG + vG

∂t ∂x ∂y 

∂vG ∂uG ∗ ∂ f0 ∗ ∂Φ 

∂x 
− 

∂y 
+ f + e z 

∂z∗ S
e−z 

∂z∗ 
= 0. (12.56) 

12.4.1 Pseudo potential vorticity 

The quantity in brackets in Equation 12.56 is called the pseudo-potential vor­
ticity since it is conserved not on particle trajectories but on their horizontal 
projections. The relation between (12.56) and (12.43) is much what we would 
expect from our earlier comparison of the equations for shallow water waves 
and internal waves. Using (12.49) and (12.50), (12.56) becomes 

� �� � �

∂ 1 ∂Φ ∂ 1 ∂Φ ∂ 1 ∂2Φ ∂2Φ 

∂t 
−
f0 ∂y ∂x 

+ 
f0 ∂x ∂y f0 ∂x2 

+ 
∂y2 

+ f 

∗ ∂ f0 ∗ ∂Φ 
+ e z e−z = 0. (12.57) 

∂z∗ S ∂z∗ 

The quasi-geostrophic approximation was originally developed by Charney 
(1948). Note that the height field completely determines quasi-geostrophic 
motion – even its time evolution. 


