
Chapter 6 

Equations of motion 

Supplemental reading: 

Holton (1979), chapters 2 and 3 deal with equations, section 2.3 deals with 
spherical coordinates, section 2.4 deals with scaling, and section 3.1 
deals with pressure coordinates. 

Houghton (1977), Chapter 7 deals with equations, and Section 7.1 deals 
with spherical coordinates. 

Serrin (1959) 

As has been mentioned in the Introduction, it is expected that almost ev­
eryone reading these lecture notes (and despite TEXification, these are only 
notes) will have already seen a derivation of the equations. I have, there­
fore, decided to cover the equations using Serrin’s somewhat less familiar 
approach. 

6.1	 Coordinate systems and 

conservation 

Let �x = (x1, x2, x3) be a fixed spatial position; this will be referred to as 
an Eulerian coordinate system. Now, at some moment t = 0 let’s look at a 
fluid and label each particle of the fluid X� = X� (t, �x) = (X1, X2, X3), where 
Xi t=0 = xi; that is, we label each particle by its position at t = 0; this will |
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92 Dynamics in Atmospheric Physics 

be referred to as a Lagrangian coordinate system. In general, each coordinate 
system may, in principle, be transformed into the other: 

x( �Eulerian: �x, t �x = � X, t) 

Lagrangian: X, t X = X(�x, t) 

Let the velocity of a fluid ‘particle’ be �u = (u1, u2, u3). 

Dxi ∂xi 
ui = = . 

Dt ∂t �X constant 

Similarly, let �a be the acceleration of a fluid ‘particle’: 

� 
∂2xi 

� 
∂ui ∂ui Dxj

ai = = + ,
∂t2 � ∂t ∂xj Dt X constant 

where the summation convention is used; that is, we sum over repeated 
indices. 

The laws of physics are fundamentally conservation statements concern­
ing D of something following the fluid. Let us, for the moment, deal with 

Dt 

some unspecified field f(xi, t) (per unit mass): 

Df ∂f ∂f Dxi 
= + . 

Dt ∂t ∂xi Dt 

Now consider some region of space R(�x). We wish to evaluate 

D � 

fρ d3 x, 
Dt R(�x) 

where ρ is density. A difficulty arises since the fluid within R(�x) is changing. 
We deal with this by switching to Lagrangian coordinates: 

D � 
D � 

fρ d3 x = fρJ d3X, 
Dt R(x�) Dt R(X� ) 

where 
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93 Equations of motion 

J =

∂(xi) 

∂(Xi) 
=


∂x1 ∂x1 ∂x1 

∂X1 ∂X2 ∂X3 

∂x2 ∂x2 ∂x2 

∂X1 ∂X2 ∂X3 

∂x3 ∂x3 ∂x3 
∂X1 ∂X2 ∂X3 

.


Since X� is fixed in the moving fluid,


D

fρ d3 x =


D

Dt R(�x) R(X� ) Dt

(fρJ) d3X. 

For conservation of mass, we take f = 1. Then


D

ρ d3 x =


D

Dt R(�x) R( �X) Dt

and since R is arbitrary, 

D 

(ρJ) d3X = 0, 

(ρJ) = 0. (6.1) 
Dt 

This is a somewhat peculiar form of the continuity equation. It is, however, 
easily converted to the usual form: 

D DJ Dρ 
(ρJ) = ρ + J ,

Dt Dt Dt 

∂(u1,x2,x3) ∂(x1,u2,x3) ∂(x1,x2,u3)
1 DJ ∂(X1,X2,X3) ∂(X1,X2,X3) ∂(X1,X2,X3)= + + 
J Dt ∂(x1,x2,x3) ∂(x1,x2,x3) ∂(x1,x2,x3) 

∂(X1,X2,X3) ∂(X1,X2,X3) ∂(X1,X2,X3) 

∂u1 ∂u2 ∂u3 
= + + = �u 

∂x1 ∂x2 ∂x3 
� · 

and 

Dρ 
Dt 

+ ρ� · �u = 0 (6.2) 
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94 Dynamics in Atmospheric Physics 

Returning to the general case 

D

fρ d3 x =


D

Dt R(�x) R(X� ) Dt

(fρJ) d3X 
⎧ 
⎪⎪⎨Df D


⎫ 
⎪⎪⎬ 
d3X= ρJ + f (ρJ)


Dt Dt
R(X� ) ⎪⎪⎩ 
⎪⎪⎭ 

=0 

Df 
ρJ d3X= 

R(X� ) Dt 
Df 

ρ d3 =
 x,

R(�x) Dt 

that is, we can move D 
Dt 

inside an integral within Eulerian space. Note also,

D is applied to f not ρf .
Dt 

6.2 Newton’s second law – for fluids 

Newton’s second law for a volume of fluid, R, is 

D

ρui d

3 x = ρfi d
3 x 

Dt R R 

momentum body force 

+ σijnj dS, (6.3) 
S 

force exerted on surface of R by f luid outside R 

σijnj dS can be rewritten 
� 
S Fi dS, where the surface force, F� , is given N.B.
 S 

by Fi = σijnj (�n is the outward normal). The stress tensor, σij, represents 
the flux of i-momentum in the minus j-direction (recall that �n is the outward 
normal whereas we are considering the force exerted on S by the fluid outside 
R.). Intuitively, we expect the flux of i-momentum in the i-direction to be 
related to pressure. 

Now, 



� � 

� �

�

95 Equations of motion 

D � � Dui
ρui d

3 x = ρ d3 x. 
Dt R R Dt 

Also, by the divergence theorem, 

σijnj dS = 
∂σij 

d3 x. 
S R ∂xj 

Finally, since R is arbitrary, we have 

Dui ∂σij
ρ = ρfi + . (6.4) 
Dt ∂xj 

Note that ρ is outside the derivative. Equation 6.4 is not the usual form of the 
momentum equation (in particular, the pressure gradient term is buried in 
∂σij ); as our first step in evaluating 

∂σij , we will consider angular momentum:
∂xj ∂xj 

D � � � 

Dt R 
�r × ρ�u d3 x = 

R 
ρ�r × f d3 x + 

S 
�r × F dS, (6.5) 

where F� = σijnj îi 
1 . (Note that (6.5) assumes no intrinsic torques.) 

Rewriting (6.5), 

� 
D � � 

∂� ˆ 2 

R 
ρ
Dt 

(�r × �u) d3 x = 
R 
ρ�r × f d3 x + 

R 
ii
∂xl 

(�ijkxjσkl) d
3 x . 

� �� � � �� � � �� � 
A B C 

1The quantity îi is a unit vector in the i-direction.

2The quantity �ijk is called an alternant and is defined as follows


�ijk ≡ 1 for ijk = 123, 231, 312 

≡ −1 for ijk = 321, 213, 132 

≡ 0 when any two of ijk are equal. 

Similarly, note that δij is the Kronecker Delta, where δij = 1 if i = j, and δij = 0 if i = j. 
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⎡ 
�u 

⎤ 

A = 
� 

R 
ρ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

���� 
D�r 
Dt 

×�u 
� �� � 

+�r × D�u 
Dt 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 
d3 x 

=0 

B = 
� 

R 
�r × 

� 

ρ 
D�u 
Dt 

− ∂σij 

∂xj 
îi 

� 

d3 x 
� �� � 

= �f from Newton’s second law 

C = 
� 

R 
îi 

� 

�ijkδjlσkl + �ijkxj 
∂σkl 

∂xl 

� 

d3 x. 

After obvious cancellation, we are left with 

îi�ijkδjlσkl d
3 x = 0 

R 

or 

îi�ijkδjlσkl = 0 

or 

î(σ32 − σ23) + ĵ(σ13 − σ31) + k̂(σ12 − σ21) = 0. 

Thus, in the absence of intrinsic torques 

σij = σji. (6.6) 

6.3 Energy 

Let us first look at the rate of change of mechanical energy. Take the mo­
mentum equation (6.4), multiply by ui and sum over i: 

D �uiui 
� 

∂σij
ρ = ρfiui + ui . (6.7) 
Dt 2 ∂xj 

Integrate (6.7) over region R 
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A B 
� �� � � �� �

D � 
1 

� � 
∂σij

ρuiui d
3 x = ρfiui d

3 x + ui d3 x. 
Dt R 2 R R ∂xj 

The last term can be rewritten 

� 
∂σij 

� 
∂ � 

∂ui 

R 
ui 
∂xj 

d3 x = 
R ∂xj 

(uiσij) d
3 x − 

R ∂xj 
σij d

3 x 

� � 
∂ui 

= 
S 
uiσijnj dS − 

R ∂xj 
σij d

3 x . 
� �� � � �� �

C D 

The labelled terms are interpreted as follows: 

Term A: Time rate of change of mechanical energy. 

Term B: Work done by body forces. 

Term C: Work done by surface stresses. 

Term D: Needs elucidation! 

Recall, there is no conservation of mechanical energy alone. What about 
total energy? 

D �
� 
u2 

�
� � 

ρ + e d3 x = ρfiui d
3 x + uiσijnj dS 

Dt R 2 R S 

+ 
S 
−K� · �n dS + 

R 
ρQd3 x 

(e = cV T , cV = heat capacity at constant volume, Q = external heating, and 

K� = heat flux). In view of the arbitrariness of R, 

D 
� 
u2 

� 
∂ 

ρ
Dt 2

+ e = ρfiui + 
∂xj 

(σijui) −� · K� + ρQ. 

Subtract from the above the relation for kinetic energy: 
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ρ
De 

= 
∂ui 

K� + ρQ. (6.8) 
Dt 

σij 
∂xj 

−� · 

Equations 6.2, 6.4, 6.6, and 6.8 are our equations of motion – so far. 

6.4 K� and σij 

The nature of K� and σij is usually (and properly) discussed in terms of molec­
ular collisions and/or turbulent mixing. We will take a somewhat different 
approach here. Let us assume 

K� = K� ρ, T, 
∂T 

. 
∂xi 

Taylor expanding in ∂T we get 
∂xi 

(0) ∂T 
Ki = Ki (ρ, T ) + Aij(ρ, T ) + . . . . 

∂xj 

In general, Ki 
(0) 

= 0. If we also assume transport to be isotropic then Aij 

must be proportional to δij; that is, 

Aij = −k(ρ, T )δij, 

and 

K� = −k(ρ, T )�T. (6.9) 

This result is, of course, far more convincingly obtained by kinetic theory 
considerations. 

Following a similarly abstract approach for σij we will assume 

∂uk
σij = σij ρ, T, . 

∂xl 

(Fluids satisfying this assumption are known as Newtonian fluids.) Taylor 
expanding the above relation we get 
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∂uk
σij = Bij(ρ, T ) + Cijkl(ρ, T ) + . . . . 

∂xl 

Again we want Bij and Cijkl to be isotropic tensors. 

Bij = − p δij 

pressure 

Cijkl = λδijδkl + µ (δikδjl + δjkδil)+ν (δikδjl − δjkδil) 
� �� � � �� � 
symmetric in i,j antisymmetric in i,j 

Since σij = σji, ν ≡ 0 and 

∂ui ∂uj
σij = −pδij + λδij� · �u + µ 

∂xj 
+ 
∂xi 

, (6.10) 

τij , the viscous stress tensor 

where µ ≡ first viscosity and λ ≡ second viscosity. The expression for τij is a 
little more complicated than the most common expressions. Stokes suggested 
that average normal viscous stress should be zero; that is, τii = 3λ�·�u+2µ�· 
�u, which implies λ + (2/3)µ = 0. The quantity η = λ + (2/3)µ is called the 
bulk viscosity and is zero for spherical molecules – but not otherwise. Still, 
for incompressible fluids where � �u ≡ 0, the second viscosity is irrelevant. · 
Also, if µ and λ are constant 

∂ ∂ 
� 

∂2ui ∂2uj 

� 

∂xj 
τij = λ

∂xi 
(� · �u) + µ 

∂xj ∂xj 
+ 
∂xi ∂xj 

or 

∂τij
îi 
∂xj 

= (λ + µ)�(� �u) + µ�2�u .· 
� �� � 

most commonly considered term 

∂uiWith (6.10), σij ∂xj 
in (6.8) becomes 

∂ui
σij 
∂xj 

= −p� · �u + Φ, 
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where Φ ≡ τij
∂ui . Φ represents dissipation by viscosity. It can be shown that 
∂xj 

Φ ≥ 0 if and only if µ ≥ 0, η ≥ 0. Using (6.9) and (6.10), and replacing fi îi 
with �g, (6.4) and (6.8) become 

Dui ∂p ∂τij
ρ 
Dt 

= ρgi −
∂xi 

+ 
∂xj 

(6.11) 

and 

DT 
ρcV 

Dt 
+ p� · �u = � · (k�T ) + ρQ + Φ. (6.12) 

Note that Φ is generally small for typical geophysical scales. 

6.5 Equations of state 

Equations 6.2, 6.11, and 6.12 represent five equations in six unknowns ui, ρ, p, T . 
The remaining equation is the equation of state. Several choices are com­
monly made. 

Perfect gas: p = ρRT (6.13)


Boussinesq fluid: ρ = ρ0(1 − α(T − T0)) (6.14)


homogeneous, incompressible fluid: ρ = constant. (6.15)


In Equation 6.12 it is common to rewrite the left-hand side as follows: 

DT DT p Dρ DS 
ρcV u� = ρcV = ρT ,

Dt 
+ p� · 

Dt 
−
ρ Dt Dt 

where S is entropy; note that thermodynamic equilibrium has been assumed. 
For a perfect gas 

DS cv DT RDρ

Dt 

= 
T Dt 

−
ρ Dt


D T cv 

= ln . (6.16) 
Dt ρR 
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The relation between S and potential temperature (Θ ≡ T cV /R/ρ) is obvi­
ous. For the Boussinesq fluid, S is proportional to T (or ρ), while for an 
incompressible, homogeneous fluid S is irrelevant. 

6.6 Rotating coordinate frame 

Consider a rotating frame (x�, y�, z�). A given position �r can be represented 

�r = x(t)̂i + y(t)ĵ + z(t)k̂ (inertial frame) 

= x�̂i� + y�ĵ� + z�k̂� (rotating frame). 

The velocity in the inertial frame can be written 

D�r 
�u = 

Dt 

= 
Dx�

î� + 
Dy�

ĵ� + 
Dz�

k̂� 
Dt Dt Dt 
velocity in rotating frame 

Dî� Dĵ� Dk̂� 
+ x� + y� + z� . 

Dt Dt Dt 
velocity of particle f ixed in rotating frame: ω�×�r 

So, 

� � � + �ω × �ru = u

and 

D � 
D � 

Dt 
= 

Dt rot 
+ �ω × . 

Thus for 

�u = �u� + ω� × �r, 
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D�u D�u D�r 
Dt 

= 
Dt 

+ �ω ×
Dt 

rot 
� 
D � 

= (�u� + ω� × �r) + ω × (�u� + �ω × �r)
Dt rot 

D�u� 
= + ω� × �u� + �ω × u� � + �ω × (ω� × �r) . 

Dt 
rot 

Now, 

�ω × (�ω × �r) = (�ω · �r)�ω − ω2�r = −ω2(�r − �ω(�ω · �r) 
ω2 

) = −ω2 �R 

(viz Figure 6.1). 

Figure 6.1: Centrifugal contribution to geopotential. 

Thus, in a rotating frame, (6.11) becomes 
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⎛ 
Coriolis force 

⎞


D�u� � �� �

ρ ⎜ 

+ 2�ω u� 
⎟ 

= �τ
⎝ 
Dt 

× � ⎠ −�p + � · 
� 
ω2R2

� 

+ ρ�g + ρ� . (6.17) 
2 

usually combined as −ρ�Ω 

where Ω ≡ geopotential. Note that, because of isotropy, the viscous term is 
the same in rotating and non-rotating systems. 

6.7 Spherical coordinates 

We shall not derive the spherical equations here. The task is straightfor­
ward. The most direct approach involves transforming our equations into 
vector-invariant form (note that � not vector-invariant), and then em­u · � is 
ploying spherical forms for the invariant operations. Here we will merely 
write down equations discussed in Holton (his section 2.3; N.B. Holton uses 
an approach different from what we have just described). Holton considers 
a quasi-cartesian system on the surface of the earth (see Figure 6.2). 

Sphere Cartesian tangent plane

r = a + z dz w = dz


dt


λ dx = a cos φdλ u = a cosφdλ

dt


φ dy = a dφ v = a dφ

dt 

If we define 

d ∂ ∂ ∂ ∂ 
dt 

≡
∂t 

+ u
∂x 

+ v
∂y 

+ w
∂z 
, 

then the equations for u,v, and w become 
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Figure 6.2: Spherical coordinates with cartesian tangent plane. 

du uv tan φ uw 1 ∂p 
dt 

− 
a 

+ 
a 

= −
ρ ∂x 

+ 2Ωv sinφ 

1 −2Ωw cos φ + (� τ )x (6.18) 
ρ

· 

dv u2 tanφ vw 1 ∂p 1 

dt 
+ 

a 
+ 

a 
= −

ρ ∂y 
− 2Ωu sin φ + 

ρ
(� · τ )y (6.19) 

dw u2 + v2 1 ∂p 1 

dt 
+ 

a 
= −

ρ ∂z 
− g + 2Ωu cos φ + 

ρ
(� · τ )z . (6.20) 

(What about equations for energy, continuity, and the gas law?) 

6.8 Scaling 

Scaling is an approach to non-dimensionalization which ideally permits or­
dering terms in an equation according to their size. For any variable, f , we 
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may write 

f = Ff, ˜

where 

F = characteristic magnitude 

f̃ = O(1) non-dimensional quantity . 

Such a redefinition leads to non-dimensional parameters which indicate the 
relative importance of various terms in equations. Some of the more famous 
non-dimensional numbers, and the physical balances they represent, are 

U inertia 
Rossby No.: Ro = 

2ΩL 
∼

Coriolis force 

Froude No.: F r = 
gL 
U2 

∼ gravity 

inertia 
LU inertia 

Reynolds No.: Re = 
ν 

∼
friction 

Ro ν friction 
Ekman No.: Ek = 

Re 
= 

2ΩL2 
∼

Coriolis force 
, 

(where ν ≡ µ/ρ). Note that there is little sense in scaling pressure in the 
absence of either data or the size of other numbers. 

The following are some serious problems with scaling: 

1. Northerly, westerly, and vertical scales and velocities are not necessarily 
the same. 

2. Several scales for a single variable may be present in a single problem. 

3. Not all variables are measured. 

Ultimately, scaling actually requires that we already have knowledge of the 
answer! The following sections deal with some specific examples of scaling. 
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6.9 Hydrostaticity 

As already noted, hydrostaticity is, in general, an approximation. We will 
use scaling to estimate the conditions needed for hydrostaticity to be a good 
approximation. One is tempted to note that g turns out to be much larger 
than any acceleration or stress in Equation 6.20 – at least for most meteo­
rological and oceanographic systems. Thus, one might argue that the only 
term left to balance g is 1 ∂p . This would, however, be a possibly misleading 

ρ ∂z

statement. To see why, let us write 

p = p0(z) + p�(x, y, z, t) 

ρ = ρ0(z) + ρ�(x, y, z, t) . 

The quantities p0 and ρ0 represent horizontal and time averages; the primed 
quantities represent deviations from these averages. In general, the averaged 
quantities dominate the above expressions; however, for stable stratification3 , 
the averaged terms are not directly involved in the dynamics (which depends 
on gradients of pressure, density, etc.). Scaling must be done after p0 and ρ0 

(and T0) have been subtracted from p and ρ (and T ). The evaluation of the 
term ρ�g in Equation 6.20 then requires knowing how ρ� is related to w, and 
so forth. It is here that one has to involve the energy equation in the scaling, 
and one discovers that a necessary condition for hydrostaticity to hold is that 
Nτ � 1 (where N is the Brunt-Vaisala frequency and τ is a characteristic 
time scale). 

This is most easily seen for a linearized adiabatic Boussinesq fluid where 
(6.20) becomes 

∂w ∂p 
ρ ∼ −gρ − . (6.21) 
∂t ∂z 

Now, ρ = ρ0 + ρ�, and ∂p0 = −gρ0. Subtracting these from (6.21), we get for 
∂z 

our vertical momentum equation 

∂w ∂p�

ρ0 
∂t 

∼ −gρ� −
∂z 

.


3We’ll explain what this means soon. 



� 

�
�
�
�
� 

�
�
�
�
�

�
�
�
�
� 

�
�
�
�
�

107 Equations of motion 

Similarly, the Boussinesq energy equation becomes 

∂ρ� dρ0 
+ w ∼ 0. 

∂t dz 

For convenience, let our variables have the following time dependence: eiωt . 
The last two equations become 

∂p�
ρ0iωw �∼ −gρ −

∂z 
dρ0

iωρ� .∼ −w 
dz 

Eliminating w from the above equations yields 

�
2ρ ω0 

dρ0 

dz 

∂p�
ρ� ∼ −gρ� −

∂z 
, 

from which we see that hydrostaticity requires that


ρ0ω
2 

dρ0g 
dz 

� 1,


or


ω2 

N2 
� 1,


where N2 g dρ0 . The quantity N is called the Brunt-Vaisala frequency 
ρ0 dz 

≡ −
and is a measure of the stratification. When N2 < 0, the fluid is statically 
unstable (that is, we have heavier fluid on top of lighter fluid)4 . 

4We will have much more to say about both the Brunt-Vaisala frequency and static 
stability in later chapters. 
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6.10 Geostrophy 

In terms of scaling, one commonly finds that Ro � 1 and Ek � 1 so that 
pressure gradients primarily balance the Coriolis force. We also saw this 
directly in the data. Nevertheless, the existence of this approximate balance, 
alone, does not permit us to calculate the time evolution of flow fields. In 
order to exploit Ro � 1 to calculate the time evolution of almost geostrophic 
fields we will have to perform a more sophisticated scaling analysis (not too 
different from what we just did in connection with hydrostaticity) which 
leads to what are called the quasi-geostrophic equations. We will defer this 
analysis until a later chapter. 

Before ending this chapter, an important aspect of geostrophic balance 
needs to be mentioned and pondered: namely, in the absence of viscosity, 
thermal conductivity, and x-variation, the following geostrophic flow is an 
exact solution of the nonlinear equations: 

T (y, z) as determined from Q = 0; that is, radiative equilibrium; 

p, ρ as determined from hydrostaticity and the gas law; 

u as determined from geostrophy; and 

v = w = 0 . 

The intrinsic difficulties with the above solution will form the focus for much 
of our discussion in Chapter 7. 


