
Chapter 7 

Symmetric circulation models 

Supplemental reading: 

Lorenz (1967) 

Held and Hou (1980) 

Schneider and Lindzen (1977) 

Schneider (1977) 

Lindzen and Hou (1988) 

Walker and Schneider (2004) 

As we noticed in our perusal of the data, atmospheric fields are far from 
being zonally symmetric. Some of the deviation from symmetry is forced 
by the inhomogeneity of the earth’s surface, and some is autonomous (trav­
elling cyclones, for example). The two are related; for example, the storm 
paths along which travelling cyclones travel are significantly determined by 
the planetary scale waves forced by inhomogeneities in the earth’s surface. 
Nevertheless, the zonally averaged circulation has, over the centuries, been 
the object of special attention. Indeed, the term ‘general circulation’ is fre­
quently taken to mean the zonally averaged behavior. This is the viewpoint 
of Lorenz (1967). 

You are urged to read chapters 1,3, and 4 of Lorenz. Chapter 1 is a 
short and especially insightful discussion of the methodology of studying the 
atmosphere. As is generally the case in this field, there will be views in 
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Lorenz which are not universally agreed on, but this hardly diminishes its 
value. 

There are several reasons for focussing on the zonally averaged circula­
tion: 

1. Significant motion systems like the tropical tradewinds are well de­
scribed by zonal averages. 

2. The circulation of the atmosphere is only a small perturbation on a 
rigidly rotating basic state which is zonally symmetric. 

3. The zonally averaged circulation is a convenient subset of the total 
circulation. 

Our approach in this chapter will be to inquire how the atmosphere 
would behave in the absence of eddies. It is hoped that a comparison of 
such results with observations will lend some insight into what maintains the 
observed zonally averaged state. In particular, discrepancies may point to 
the rôle of eddies in maintaining the zonal average. This has been a matter 
of active controversy to the present. 

7.1 Historical review 

A very complete historical treatment of this subject is given in chapter 4 
of Lorenz. We will only present a limited sketch here. The first treatment 
of contemporary relevance was that of Hadley (1735). Hadley’s aim was 
to explain the easterly (actually northeasterly in the Northern Hemisphere) 
tradewinds of the tropics and the prevailing westerlies of middle latitudes. 
His brief explanation is summarized in Figure 7.1. Ignoring Hadley’s error in 
assuming conservation of velocity rather than angular momentum, Hadley’s 
argument ran roughly as follows: 

1. Warm air rises at the equator and flows poleward at upper levels ap­
proximately conserving angular momentum. (In view of the remarks at 
the end of Chapter 6, it is not, however, at all obvious why one would 
have a meridional circulaton at all. We will discuss this later.) Be­
cause the distance from the axis of rotation diminishes with increasing 
latitude, large westerly currents are produced at high latitudes. 
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Figure 7.1: A schematic representation of the general circulation of the atmosphere as 
envisioned by Hadley (1735). 

2. The westerly currents would be far larger than observed. It is, therefore, 
presumed that friction would reduce westerly currents. As a result, the 
return flow at the surface will have a momentum deficit leading to 
tropical easterlies. 

(In what sense does Hadley’s argument constitute an ‘explanation’?) 
The above model was generally accepted for over a century. The main 

criticism of this model was that it predicted northwesterly winds at midlat­
itudes whereas nineteenth century data suggested southwesterly winds (in 
the Northern Hemisphere). This difficulty was answered independently by 
Ferrel (1856) and Thomson (1857). Their hypothesized solution is shown in 
Figure 7.2. Briefly, Ferrel and Thomson supplemented Hadley’s 



112 Dynamics in Atmospheric Physics 

Figure 7.2: The general circulation of the atmosphere according to Thomson (1857). 

arguments as follows. They noted that at the latitude at which zonal flow 
is zero, there must be a maximum in pressure (Why?), and that within the 
frictional layer next to the surface, a shallow flow will be established down 
pressure gradients leading to the reversed cell shown in Figure 7.2 (today 
referred to as a Ferrel cell). By allowing the Hadley circulation to remain 
at upper levels, the tropics can continue to supply midlatitudes with angular 
momentum which presumably is communicated to the Ferrel cell by friction. 

Although there was a general acceptance of the Ferrel-Thomson model 
of the general circulation in the late nineteenth century, there was also a 
general uneasiness due to the obvious fact that the observed circulation was 
not zonally symmetric. Moreover, all the models we have discussed were 
developed in only a qualitative, verbal way. This is, of course, not surprising 
since the quantitative knowledge of atmospheric heating, turbulent transfer, 
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and so forth, was almost completely lacking. So was virtually any information 
about the atmosphere above the surface – except insofar as cloud motions 
indicated upper level winds. 

In 1926, Jeffreys put forth an interesting and influential criticism of all 
symmetric models as an explanation of midlatitude surface westerlies. He 
began with an equation for zonal momentum (viz. Equation 6.18): 

∂u ∂u ∂u ∂u uv tan φ uw 
∂t 

+ u
∂x 

+ v
∂y 

+ w
∂z 

− 
a 

+ 
a 

1 ∂p 1 
= −

ρ ∂x 
+ 2Ωv sinφ + 2Ωw cos φ + 

ρ
(� · τ )x. (7.1) 

For the purposes of Jeffreys’ argument, (7.1) can be substantially simplified. 
Steadiness and zonal symmetry (no eddies) imply ∂ = ∂ = 0. Scaling shows 

∂t ∂x 

that 

uw uv tan φ 
, 2Ωw cos φ � , 2Ωv sinφ 

a a 

(What about the equator?). In addition, 

∂u uv tan φ v ∂u uv tanφ v ∂ 
v
∂y 

− 
a 

= 
a ∂φ 

− 
a 

= 
a cosφ ∂φ

(u cosφ). 

Thus (7.1) becomes 

v ∂ ∂u 1 

a cosφ ∂φ
(u cosφ) + w

∂z 
− 2Ωv sinφ = 

ρ
(� · τ )x. (7.2) 

Jeffreys further set 

∂ ∂u 
(� τ )x = µ . (7.3) · 

∂z ∂z 

Integrating (7.2) over all heights yields 

� ∞ ρv ∂ � ∞ ∂u 
(u cosφ) dz + ρw dz 

0 a cos φ ∂φ 0 ∂z 
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� ∞ ∂u −CD u 2 0, (7.4)
−2Ω sin φ
 ρ0v dz = −µ =

∂z
0 0 

2where CD is the surface drag coefficient, and CD u0 is the usual phenomeno­
logical expression for the surface drag. Note that the earth’s angular momen­
tum cannot supply momentum removed by surface drag (since there is no net 
meridional mass flow; i.e., 

� 
0
∞ ρ0v dz = 0.). Thus, CD u

2
0 must be balanced 

by the advection of relative momentum. Jeffreys argued that the integrals on 
the left-hand side of (7.4) would be dominated by the first integral evaluated 
within the first kilometer or so of the atmosphere. Underlying his argument 
was the obvious lack of data to do otherwise. He then showed that this in­
tegral was about a factor of 20 smaller than CD u0

2 . He concluded that the 
maintenance of the surface westerlies had to be achieved by the neglected 
eddies. It may seem odd that Jeffreys, who so carefully considered the effect 
of the return v-flow on the Coriolis torque, ignored it for the transport of 
relative momentum. However, since it was the Ferrel cell he was thinking of, 
its inclusion would not have altered his conclusion. What he failed to note 
was that in both Hadley’s model and that of Ferrel and Thomson, it was the 
Hadley cell which supplied westerly momentum to middle latitudes. Thus 
Jeffreys’ argument is totally inconclusive; it certainly is not a proof that 
a symmetric circulation would be impossible (though this was sometimes 
claimed in the literature). 

A more balanced view was presented by Villem Bjerknes (1937) towards 
the end of his career. Bjerknes suggested that in the absence of eddies the 
atmosphere would have a Ferrel-Thomson circulation – but that such an at­
mosphere would prove unstable to eddies. This suggestion did not, however, 
offer any estimate of the extent to which the symmetric circulation could 
explain the general circulation, and the extent to which eddies are essential. 

Ed Schneider and I attempted to answer this question by means of 
a rather cumbersome numerical calculation (Schneider and Lindzen, 1977; 
Schneider, 1977). The results shown in Figure 7.3 largely confirm Bjerknes’ 
suggestion. The main shortcoming of this calculation was that it yielded a 
zonal jet that was much too strong. Surface winds were also a little weaker 
than observed, but on the whole, the symmetric circulation suffered from 
none of the inabilities Jeffreys had attributed to it. In order to see how the 
symmetric circulation works, it is fortunate that Schneider (1977) discovered 
a rather simple approximate approach to calculating the Hadley circulation. 
Held and Hou (1980) explored this approximation in some detail. We shall 
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briefly go over the Held and Hou calculations. 
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Figure 7.3: Example of an eddy-free symmetric circulation found by Schneider (1977). 
Panel (a) shows contours of zonal wind (contour intervals of 15ms−1). Panel (b) shows 
streamfunction contours (contour intervals of 1012 gs−1). Panel (c) shows temperature 
contours (contour intervals of 10 K). 
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7.2 Held and Hou calculations 

Held and Hou restrict themselves to a Boussinesq fluid of depth H. For such 
a fluid, the continuity equation is simplified to 

� · �u = 0. (7.5) 

With (7.5) as well as the assumptions of steadiness and zonal symmetry, 
and the retention of only vertical diffusion in the viscous stress and thermal 
conduction terms, our remaining equations of motion become 

uv tan φ ∂ ∂u 
(�uu)− f = ν (7.6) � · 

���� 
v − 

a ∂z ∂z 
2Ω sinφ 

u2 tan φ 1 ∂Φ ∂ 
� 

∂v 
� 

� · (�uv) + fu + 
a 

= −
a ∂φ 

+ 
∂z 

ν
∂z 

(7.7) 

(�uΘ) = 
∂ 

ν
∂Θ (Θ − ΘE) 

(7.8) � · 
∂z ∂z 

− 
τ 

and 
∂Φ Θ 

= g . (7.9) 
∂z Θ0 

(N.B. Φ = p
ρ
.) The quantity ΘE is presumed to be a ‘radiative’ equilibrium 

temperature distribution for which we adopt the simplified form 

ΘE(φ, z) 
� 

1 2 
� � 

H � 

+ P2(sinφ) + ΔV z − , (7.10) ≡ 1 −ΔH
Θ0 3 3 2 

where P2(x) ≡ 1 2 H(3x −1), x = sinφ, Θ0 = ΘE(0, ), ΔH = fractional poten­
2 2 

tial temperature drop from the equator to the pole, ΔV = fractional potential 
temperature drop from H to the ground, and τ is a ‘radiative’ relaxation time. 
(The reader should work out the derivation of Equations 7.6–7.9. N.B. In 
the Boussinesq approximation, density is taken as constant except where it 
is multiplied by g. The resulting simplifications can also be obtained for a 
fully stratified atmosphere by using the log-pressure coordinates described in 
Chapter 4.) 
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The boundary conditions employed by Held and Hou are 

no heat conduction 

∂u ∂v ∂Θ 
= = = w = 0 at z = H (7.11) 

∂z ∂z ∂z ���� 
� �� � rigid top


no stress


∂Θ 
= w = 0 at z = 0 (7.12) 

∂z 

∂u ∂v 
ν = Cu, ν = Cv at z = 0 (7.13) 
∂z ∂z 

linearization of surface stress conditions 

v = 0 at φ = 0 . (7.14) 

symmetry about the equator 

The quantity C is taken to be a constant drag coefficient. Note that this is 
not the same drag coefficient that appeared in (7.4); neither is the expression 
for surface drag which appears in (7.13) the same. As noted in (7.13), the 
expression is a linearization of the full expression. The idea is that the full 
expression is quadratic in the total surface velocity – of which the contribution 
of the Hadley circulation is only a part. The coefficient C results from the 
product of CD and the ‘ambient’ surface wind. 

When ν ≡ 0 we have already noted that our equations have an exact 
solution: 

v = w = 0 (7.15) 

Θ = ΘE (7.16) 

and 

u = uE, (7.17) 

where uE satisfies 
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∂ 
� 

uE 
2 tan φ

� 
g ∂ΘE 

∂z 
fuE + 

a 
= −

aΘ0 ∂φ 
(where y = aφ). (7.18) 

If we set uE = 0 at z = 0, the appropriate integral of (7.18) is (see Holton, 
1992, p. 67): 

�� �1/2 
� 

uE z 
= 1 + 2R − 1 cos φ, (7.19) 

Ωa H 

where 

gHΔH
R = . (7.20) 

(Ωa)2 

When R � 1, 

uE z 
= R cosφ . (7.21) 

Ωa H 
Why isn’t the above solution, at least, approximately appropriate? Why 

do we need a meridional solution at all? Hadley already implicitly recognized 
that the answer lies in the presence of viscosity. A theorem (referred to as 
‘Hide’s theorem’) shows that if we have viscosity (no matter how small), 
(7.15)–(7.19) cannot be a steady solution of the symmetric equations. 

7.2.1 Hide’s theorem and its application 

The proof of the theorem is quite simple. We can write the total angular 
momentum per unit mass as 

M ≡ Ωa 2 cos 2 φ + ua cosφ (7.22) 

(recall that ρ is taken to be ‘constant’), and (7.6) may be rewritten 

∂2M � · (�uM) = ν 
∂z2 

. (7.23) 
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Now suppose that M has a local maximum somewhere in the fluid. We 
may then find a closed contour surrounding this point where M is constant. 
If we integrate (7.23) about this contour, the contribution of the left-hand 
side will go to zero (Why?), while the contribution of the right-hand side will 
be negative (due to down gradient viscous fluxes). Since such a situation is 
inconsistent, M cannot have a maximum in the interior of the fluid. We next 
consider the possibility that M has a maximum at the surface. We may now 
draw a constant M contour above the surface, and close the contour along 
the surface (where w = un = 0). Again, the contribution from the left-hand 
side will be zero. The contribution from the right-hand side will depend 
on the sign of the surface wind. If the surface wind is westerly, then the 
contribution of the right-hand side will again be negative, and M , therefore, 
cannot have a maximum at the surface where there are surface westerlies. If 
the surface winds are easterly, then there is, indeed, a possibility that the 
contribution from the right-hand side will be zero. Thus, the maximum value 
of M must occur at the surface in a region of surface easterlies1! An upper 
bound for M is given by its value at the equator when u = 0; that is, 

Mmax < Ωa 2 . (7.24) 

Now uE as given by (7.19) implies (among other things) westerlies at the 
equator and increasing M with height at the equator – all of which is for­
bidden by Hide’s theorem – at least for symmetric circulations. A meridional 
circulation is needed in order to produce adherence to Hide’s theorem. 

Before proceeding to a description of this circulation we should recall 
that in our discussion of observations we did indeed find zonally averaged 
westerlies above the equator (in connection with the quasi-biennial oscilla­
tion, for example). This implies the existence of eddies which are transporting 
angular momentum up the gradient of mean angular momentum! 

A clue to how much of a Hadley circulation is needed can be obtained 
by seeing where uE = uM ; by uM we mean the value of u associated with 
M = Ωa2 (viz Equation 7.24). From (7.22) we get 

Ωa sin2 φ 
uM = . (7.25) 

cos φ 

1It is left to the reader to show that M cannot have a maximum at a stress-free upper 
surface. 
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Setting uE = uM gives an equation for φ = φ∗. For φ < φ∗, uE violates 
Hide’s theorem. 

sin2 φ∗ 
[(1 + 2R)1/2 − 1] cos φ∗ = . (7.26) 

cosφ∗ 

(Recall that R ≡ gHΔH .) 
(Ωa)2 

Solving (7.26) we get 

φ∗ = tan−1{[(1 + 2R)1/2 − 1]1/2}. (7.27) 

For small R, 

φ∗ = R1/2 . (7.28) 

Using reasonable atmospheric values 

g = 9.8 ms−2 

H = 1.5 104 m 

Ω = 2π/(8.64 104 s) 

a = 6.4 106 m 

and 

ΔH ∼ 1/3, 

we obtain from (7.20) 

R ≈ .226 

and 

R1/2 ≈ .48 
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and from (7.28) 

φ∗ ≈ 30◦. 

Thus, we expect a Hadley cell over at least half the globe2 . 

7.2.2 Simplified calculations 

Solving for the Hadley circulation is not simple even for the highly simplified 
model of Held and Hou. However, Schneider and Held and Hou discovered 
that the solutions they ended up with when viscosity was low were approxi­
mately constrained by a few principles which served to determine the main 
features of the Hadley circulation: 

1. The upper poleward branch conserves angular momentum; 

2. The zonal flow is balanced; and 

3. Surface winds are small compared to upper level winds. 

In addition: 

4. Thermal diffusion is not of dominant importance in Equation 7.8. 

Held and Hou examine, in detail, the degree to which these principles 
are valid, and you are urged to read their work. However, here we shall 
merely examine the implications of items (1)–(4) and see how these compare 
with the numerical solutions from Held and Hou. 
Principle (1) implies 

Ωa sin2 φ 
u(H, φ) = uM = . (7.29) 

cos φ 
2The choice ΔH = 1/3 is taken from Held and Hou (1980) and corresponds to ΘE 

varying by about 100◦ between the equator and the poles. This, indeed, is reasonable 
for radiative equilibrium. However, more realistically, the atmosphere is, at any moment, 
more nearly in equilibrium with the sea surface (because adjustment times for the sea are 
much longer than for the atmosphere) and, therefore, a choice of ΔH ≈ 1/6 may be more 
appropriate. This leads to R1/2 ≈ .34 and φ∗ ≈ 20◦, which is not too different from what 
was obtained for ΔH = 1/3. This relative insensitivity of the Hadley cell extent makes it 
a fairly poor variable for distinguishing between various parameter choices. 



124 Dynamics in Atmospheric Physics 

Principle (2) implies 

u2 tan φ 1 ∂Φ 
fu + = . (7.30) 

a 
−
a ∂φ 

Evaluating (7.30) at z = H and z = 0, and subtracting the results yields 

tan φ 
f [u(H) − u(0)] + [u 2(H) − u 2(0)] 

a 
1 ∂ 

= −
a ∂φ

[Φ(H) − Φ(0)]. (7.31) 

Integrating (7.9) from z = 0 to z = H yields 

¯Φ(H) − Φ(0) 
= 

g 
Θ, (7.32) 

H Θ0 

where Θ̄ is the vertically averaged potential temperature. Substituting (7.32) 
into (7.31) yields a simplified ‘thermal wind’ relation 

f [u(H) − u(0)] + 
tan φ 

[u 2(H) − u 2(0)] = 
gH ∂Θ̄

. (7.33) 
a 

−
aΘ0 ∂φ 

Principle (3) allows us to set u(0) = 0. Using this and (7.29), (7.33) becomes 

Ωa sin2 φ tan φ Ω2a2 sin4 φ gH ∂Θ̄
2Ω sin φ + = . (7.34) 

cosφ a cos2 φ 
−
aΘ0 ∂φ 

Equation 7.34 can be integrated with respect to φ to obtain 

¯ ¯ Ω2 2Θ(0) − Θ(φ)
= 

a sin4 φ
. (7.35) 

Θ0 gH 2 cos2 φ 

Note that conservation of angular momentum and the maintenance of a bal­
anced zonal wind completely determine the variation of Θ̄ within the Hadley 
regime. Moreover, the decrease of Θ̄ with latitude is much slower near the 
equator than would be implied by ΘE ! 

Finally, we can determine both Θ̄(0) and the extent of the Hadley cell, 
φH , with the following considerations: 
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1. At φH, temperature should be continuous so 

¯ = Θ̄E(φH). (7.36) Θ(φH)

2. From Equation 7.8 we see that the Hadley circulation does not produce 
net heating over the extent of the cell. For the diabatic heating law in 
Equation 7.8 we therefore have 

� φH 
� φH

¯ ¯Θ cosφdφ = ΘE cosφdφ. (7.37) 
0 0 

Substituting (7.35) into (7.36) and (7.37) yields the two equations we need 
in order to solve for φH and Θ̄(0). The solution is equivalent to matching 
(7.35) to Θ̄E so that ‘equal areas’ of heating and cooling are produced. This 
is schematically illustrated in Figure 7.4. Also shown are uM (φ) and uE(φ). 

The algebra is greatly simplified by assuming small φ. Then (7.35) 
becomes 

Θ̄ Θ(0) ¯ 1 Ω2a2 

Θ0 
≈ 

Θ0 
−

2 gH 
φ4 (7.38) 

and (7.10) becomes 

¯ ¯ΘE ΘE(0) 
= − ΔHφ

2 . (7.39) 
Θ0 Θ0 

Substituting (7.38) and (7.39) into (7.36) and (7.37) yields 

Θ(0) Θ̄E(0) 5 

Θ0 
=

Θ0 
−

18 
RΔH (7.40) 

and 

�1/2 

φH = R . (7.41) 
3 

� 
5 
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Figure 7.4: Schematic drawings of the vertical mean potential temperature distribution 
(upper figure) and the zonal wind distribution at the top of the atmosphere (lower figure). 
With Newtonian cooling (linear in Θ), conservation of potential temperature requires that 
the shaded areas be equal. Note that this idealized circulation increases the baroclinicity 
of the flow between φ∗ (where uE = UM ) and φH . 
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(Remember that gHΔH ; for a slowly rotating planet such as Venus, φH2R ≡
Ω2a

can extend to the pole.) 

We see that continuity of potential temperature and conservation of 
angular momentum and potential temperature serve to determine the merid­
ional distribution of temperature. the intensity of the Hadley circulation 
will be such as to produce this temperature distribution. In section 10.2 
of Houghton, 1977, there is a description of Charney’s viscosity dominated 
model for a meridional circulation. In that model, Θ = ΘE and u = uE , 
except in thin boundary layers, and the meridional velocity is determined by 

urequiring that fv balance the viscous diffusion of momentum, ν ∂
∂z

2

2 . Such a 
model clearly violates Hide’s theorem. A more realistic viscous model is de­
scribed by Schneider and Lindzen (1977) and Held and Hou (1980), wherein 
the meridional circulation is allowed to modify Θ through the following lin­
earization of the thermodynamic energy equation 

∂Θ −w = (Θ − ΘE)/τ, 
∂z 

where ∂
∂z 
Θ is a specified constant. In such models the meridional circulation 

continues, with gradual diminution, to high latitudes rather than ending 
abruptly at some subtropical latitude – as happens in the present ‘almost 
inviscid’ model. On the other hand, the modification of Θ (for the linear 
viscous model) is restricted to a neighborhood of the equator given by 

φ ∼ R∗1/4 , 

where 

� 
τν �� 

gH � 

R∗ ≡ 
4H Ω2a2 

ΔV . 

When R∗1/4 ≥ R1/2 (viz. Equation 7.28) then a viscous solution can be com­
patible with Hide’s theorem. Note, however, that linear models cannot have 
surface winds (Why? Hint: consider the discussion of Jeffreys’ argument.). 

Returning to our present model, there is still more information which 
can be extracted. Obtaining the vertically integrated flux of potential tem­
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perature is straightforward. 

1 
� H 1 ∂ 

(vΘcosφ) dz =
Θ̄E − Θ̄

. (7.42) 
H 0 a cosφ ∂φ τ 

In the small φ limit, Θ̄E and Θ̄ are given by (7.38)–(7.41) and (7.42) can be 
integrated to give 

1 
� H 

vΘ dz 
Θ0 0 

5 
� 

5
�1/2 HaΔH 

⎡ 
φ 

� 
φ 
�3 � 

φ 
�5
⎤ 

=
18 3 τ

R3/2 ⎣ 
φH 

− 2 
φH 

+ 
φH 

⎦ . (7.43) 

Held and Hou are also able to estimate surface winds on the basis of this 
simple model. For this purpose additional assumptions are needed: 

1. One must assume either 
(a) the meridional flow is primarily confined to thin boundary layers 
adjacent to the two horizontal boundaries, or that 
(b) profiles of u and Θ are self-similar so that 

u(z) − u(0) Θ(z) −Θ(0) 
. 

u(H) − u(0)
≈

Θ(H) − Θ(0) 

(We shall employ (a) because it’s simpler.) 

2. Neither the meridional circulation nor diffusion affects the static sta­
bility so that 

Θ(H) − Θ(0) 
.≈ ΔV

Θ0 

(This requires that the circulation time and the diffusion time both be 
longer than τ ; a serious discussion of this would require consideration 
of cumulus convection.) 

With assumptions (1) and (2) above we can write 
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1 
� H 

vΘ dz ≈ V ΔV , (7.44) 
Θ0 0 

where V is a mass flux in the boundary layers. With (7.44), (7.43) allows us 
to solve for V. 

Similarly, we have for the momentum flux 

� H 

vu dz ≈ V uM . (7.45) 
0 

To obtain the surface wind, we vertically integrate (7.23) (using (7.22) and 
(7.13)) to get 

1 ∂ � H 

cos 2 φ uv dz = −Cu(0). (7.46) 
a cos2 φ ∂φ 0 

From (7.43)–(7.46) we then get 

⎡� �2 � �4 � �6
⎤ 

25 ΩaHΔH 
R2 φ 10 φ 7 φ 

Cu(0) ≈ − 
18 τ ΔV 

⎣ 
φH 

− 
3 φH 

+
3 φH 

⎦ . (7.47) 

Equation 7.47 predicts surface easterlies for 

�
3
�1/2 

φ < φH (7.48) 
7 

and westerlies for 

� 
3
�1/2 

φH < φ < φH. (7.49) 
7 

For the parameters given following Equation 7.28, the positions of the 
upper level jet and the easterlies and westerlies are moderately close to those 
observed. It can also be shown that for small ν, the above scheme leads to a 
Ferrel cell above the surface westerlies. We will return to this later. For the 
moment we wish to compare the results of the present simple analysis with 
the results of numerical integrations of Equations 7.5–7.14. 

http:7.5�7.14
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7.2.3 Comparison of simple and numerical results 

Unfortunately, the results in Held and Hou are for H = 8 103m rather ×
than 1.5×104m. From our simple relations, we correctly expect this to cause 
features to be compressed towards the equator. Also, Held and Hou adopted 
the following values for τ , C , and ΔV : 

τ = 20 days 

C = 0.005 ms−1 

ΔV = 1/8. 

Figure 7.5: Zonal wind at z = H for three values of ν , compared with the simple model 
for the limit ν 0 (from Held and Hou, 1980 →

Figures 7.5–7.8 compare zonal winds at z = H, M at z = H, heat flux, 
and surface winds for our simple calculations and for numerical integrations 
with various choices of ν. In general, we should note the following: 

1. As we decrease ν the numerical results more or less approach the simple 
results, and for ν = .5m2s−1 (generally accepted as a ‘small’ value) our 
simple results are a decent approximation. (In fact, however, reducing 
ν much more does not convincingly show that the limit actually is 
reached since the numerical solutions become unsteady.) 
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Figure 7.6: A measure of M , namely, ((Ωa2 −M)/a), evaluated at z = H as a function 
of φ for diminishing values of viscosity, ν . Note that zero corresponds to conservation of 
M (from Held and Hou, 1980). 

Figure 7.7: Meridional heat fluxes for various values of ν – as well as the theoretical 
limit based on the simple calculations (from Held and Hou, 1980). 
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Figure 7.8: Surface wind for various values of ν , and the theoretical inviscid limit based 
on simple calculations (from Held and Hou, 1980). 

2. The presence of modest vertical viscosity increass and broadens both 
heat flux and the distribution of surface winds (Why?). Viscosity also 
reduces the magnitude of, broadens, and moves poleward the upper 
level jet. 

3. Very near the equator, the numerical results do not quite converge to 
constant M at z = H. The reason for this can be seen in Figures 7.9 
and 7.10 where meridional cross sections are shown for the meridional 
stream functions and zonal wind. 

Note that the upward branch of the Hadley cell does not rise solely at 
the equator (as supposed in the simple theory) but over a 10 − −15◦ 

neighbourhood of the equator. Note also the emergence of the Ferrel 
cell at small ν. 

7.3 Summary and difficulties 

Before summarizing what all this tells us about the general circulation let us 
return to Figure 7.3. We see that Schneider’s symmetric circulation, which 
is by and large consistent with Held and Hou’s, also manages to predict an 
elevated tropical tropopause height and the associated tropopause ‘break’ at 



133 Symmetric circulation models 

Figure 7.9: Meridional streamfunctions and zonal winds. In the left part of the figure, 
the streamfunction ψ is given for ν = 25, 10, and 5 m2s−1, with a contour interval of 
0.1 ψmax. The value of 0.1 ψmax (m

2s−1) is marked by a pointer. The right part of each 
panel is the corresponding zonal wind field with contour intervals of 5 ms−1 . The shaded 
area indicates the region of easterlies (from Held and Hou, 1980). 
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Figure 7.10: Same as Figure 7.9, but for ν = 2.5, 1.0, and 0.5 m2s−1 . Note the emergence 
of a Ferrel cell in the ψ-field where ψ < 0 (indicated by shading) (from Held and Hou, 
1980). 
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the edge of the Hadley circulation. The midlatitude tropopause somewhat 
artificially reflects the assumed ΘE distribution. The elevated tropopause in 
the tropics results from the inclusion of cumulus heating. 

7.3.1 Remarks on cumulus convection 

Cumulus heating will not be dealt with in these lectures, but for the moment 
three properties of cumulus convection should be noted: 

1. It is, in practice, the primary mechanism for carrying heat from the 
surface in the tropics. 

2. Cumulus towers, for simple thermodynamic reasons, extend as high as 
16 km, and appear to be the determinant of the tropical tropopause 
height and the level of Hadley outflow. Remember that tropical cir­
culations tend to wipe out horizontal gradients. Thus, the tropopause 
tends to be associated with the height of the deepest clouds. 

3. Cumulus convection actively maintains a dry static stability (as re­
quired in the calculation of Hadley transport). This is explained in 
Sarachik (1985). 

A more detailed description of cumulus convection (and its parameterization) 
can be found in Emanuel (1994)as well as in Lindzen (1988b). 

7.3.2 Preliminary summary 

On the basis of our study of symmetric circulations (so far) we find the 
following: 

1. Symmetric solutions yield an upper level jet in about the right place 
but with much too large a magnitude. 

2. Symmetric circulations yield surface winds of the right sign in about 
the right place. In the absence of vertical diffusion, magnitudes are too 
small, but modest amounts of vertical diffusion corrects matters, and 
cumulus clouds might provide this ‘diffusion’. (Schneider and Lindzen, 
1976, discuss cumulus friction.) 
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3. Calculated Hadley circulations have only a finite extent. In contrast 
to Hadley’s and Ferrel and Thomson’s diagnostic models, the upper 
branch does not extend to the poles. Thus our Hadley circulation can­
not carry heat between the tropics and the poles, and cannot produce 
the observed pole–equator temperature difference. 

4. The calculated temperature distribution does not have the pronounced 
equatorial minimum at tropopause levels that is observed (viz. Fig­
ure 5.11). 

5. Although not remarked upon in detail, the intensity of the Hadley 
circulation shown in Figure 7.10 is weaker than what is observed. 

At this point we could glibly undertake to search for the resolution of 
the above discrepancies in the rôle of the thus far neglected eddies. However, 
before doing this, it is important to ask whether our symmetric models have 
not perhaps been inadequate in some other way besides the neglect of eddies. 

7.4 Asymmetry about the equator 

Although we do not have the time to pursue this (and most other matters) 
adequately, the reader should be aware that critical reassessments are essen­
tial to the scientific enterprise – and frequently the source of truly important 
problems and results. What is wrong with our results is commonly more 
important than what is right! A particular shortcoming will be discussed 
here: namely, the assumption that annual average results can be explained 
with a model that is symmetric about the equator. The importance of this 
shortcoming has only recently been recognized. (This section is largely based 
on the material in a paper by Lindzen and Hou, 1988.) This fact alone should 
encourage the reader to adopt a more careful and critical attitude. 

What is at issue in the symmetry assumption can most easily be seen by 
looking at some data for the meridional circulation itself. Thus far we have 
not paid too much attention to this field. Figure 7.11 shows the meridional 
circulation for solstitial conditions. Not surprisingly, it is not symmetric 
about the equator. More surprising, however, is the degree of asymmetry: 
the ‘winter’ cell extends from well into the summer hemisphere (∼ 20◦) to 
well into the winter hemisphere (∼ 30◦), whereas the ‘summer’ cell barely 
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Figure 7.11: Time average meridional-height cross sections of the streamfunction for 
the mean meridional circulation. Units, 1013 gs−1; contour intervals, 0.2 1013 gs−1 .×
December–February 1963–73 (upper panel) and June–August 1963–73 (lower panel) (from 
Oort, 1983). 
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exists at all! Figures 5.10 and 5.11 show meridional sections of zonally av­
eraged zonal wind and temperature for solstitial conditions. Within about 
20–25◦ of the equator these fields are symmetric about the equator. Thus, in 
this region, at least, an average over winter and summer of these fields will 
still give the solstitial distributions. Finally, Figure 7.12 shows the monthly 
means of the meridional circulation for each of the twelve months of the 
year. This figure is a little hard to interpret since it extends to only 15◦S. 
However, to a significant extent it suggests that except for the month of 
April, the asymmetric solstitial pattern is more nearly characteristic of every 
month than is the idealized symmetric pattern invoked since Hadley in the 
eighteenth century. Clearly, the assumption of such symmetry is suspect. 

Some insight into what is going on can, interestingly enough, be got­
ten from the simple ‘equal area’ argument. This is shown in Lindzen and 
Hou (1988). We will briefly sketch their results here. They studied the axi­
ally symmetric response to heating centered off the equator at some latitude 
φ0. Thus Equation 7.10 was replaced by 

ΘE ΔH 
� 
z 1

� 

Θ0 

∼
3 H 

−
2 

. (7.50) = 1 + (1 − 3(sin φ − sinφ0)
2) + ΔV 

The fact that φ0 = 0 substantially complicates the problem. Now the north­
ward and southward extending cells will be different. Although we still re­
quire continuity of temperature at the edge of each cell, the northward extent 
of the Hadley circulation, φH+, will no longer have the same magnitude as 
the southward extent, −φH−. Moreover, the ‘equal area’ argument must now 
be applied separately to the northern and southern cells. Recall that in the 
symmetric case, the requirement of continuity at φH and the requirement 
of no net heating (i.e., ‘equal area’) served to determine both φH and Θ̄(0), 
the temperature at the latitude separating the northern and southern cells 
– which for the symmetric case is the equator. In the present case, this sep­
arating latitude can no longer be the equator. If we choose this latitude to 
be some arbitrary value, φ1, then the application of temperature continuity 
and ‘equal area’ for the northern cell will lead to a value of Θ̄(φ1) that will, 
in general, be different from the value obtained by application of these same 
constraints to the southern cell. In order to come out with a unique value 
for φ1 we must allow φ1 to be a variable to be determined. 

The solution is now no longer obtainable analytically, and must be de­
termined numerically. This is easily done with any straightforward search 
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Figure 7.12: Streamlines of the mean meridional circulation for each month. The isolines 
give the total transport of mass northward below the level considered. Units, 1013 gs−1 

(from Oort and Rasmussen, 1970). 
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routine. Here we will merely present a few of the results. In Figure 7.13 
we show how φH+, φH−, and φ1 vary with φ0 for ΔH = 1/3 (correspond­
ing to a pole–equator temperature difference in Θ̄E of about 100◦C) and 
for ΔH = 1/6. The latter case corresponds to the atmosphere being ther­
mally forced by the surface temperature, and is probably more appropriate 
for comparisons with observations. For either choice, we see that φ1 goes 
to fairly large values for small values of φ0. At the same time, φH− also 
grows to large values while φH+ and φ1 asymptotically approach each other 
– consistent with the northern cell becoming negligible in northern summer. 
Figure 7.14 shows Θ̄ and Θ̄E versus latitude for φ0 = 0 and φ0 = 6◦. We see 

very clearly the great enlargement and intensification of the southern cell and 
the corresponding reduction of the northern cell that accompanies the small 
northward excursion of φ0 (Recall that the intensity of the Hadley circulation 
is proportional to (Θ − ΘE); viz Equation 7.42.). We see, moreover, that in 
agreement with observations at tropopause levels Θ̄ is symmetric about the 
equator (at least in the neighbourhood of the equator). We also see that Θ̄
has a significant minimum at the equator; such a minimum is observed at 
the tropopause, but is not characteristic of Θ averaged over the depth of the 
troposphere. 

While the simple ‘equal area’ argument seems to appropriately explain 
why the Hadley circulation usually consists in primarily a single cell trans­
porting tropical air into the winter hemisphere, the picture it leads to is 
not without problems. Figure 7.15 shows u(H, φ) for φ0 = .1 and ΔH = 1/6. 
Consistent with observations, u(H, φH+) is much weaker than u(H, φH−) and 
u is symmetric about the equator in the neighbourhood of the equator, but 
u(H, φH−) is still much larger than the observed value, and now u(H, 0) in­
dicates much stronger easterlies than are ever observed. Further difficulties 
emerge when we look at the surface wind in Figure 7.16. We see that there 
is now a low level easterly jet on the winter side of the equator; this is, in 
fact, consistent with observations. However, the surface wind magnitudes 
(for φ0 = 6◦) are now excessive (only partly due to the linearization of the 
drag boundary condition), and, more ominously, there are surface westerlies 
at the equator in violation of Hide’s theorem. There are exercises where 
you are asked to discuss these discrepancies. Lindzen and Hou (1988) show 
that all these discrepancies disappear in a continuous numerical model with 
a small amount of viscosity. The discrepancies arise from the one overtly 
incorrect assumption in the simple approach: namely, that the angular mo­
mentum on the upper branch of the Hadley circulation is characteristic of 
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Figure 7.13: The quantities φH+, φH−, and φ1 as functions of φ0 (see text for defini­
tions). Note that 1◦ of latitude ∼ 0.0175 radians (from Lindzen and Hou, 1988). = 
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Figure 7.14: Θ̄/Θ0 (open circles) and Θ̄E/Θ0 (filled circles) as functions of φ obtained 
with the simple ‘equal area’ model with ΔH = 1/6. The upper panel corresponds to 
φ0 = 0; the lower panel corresponds to φ0 = 6o (from Lindzen and Hou, 1988). 
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Figure 7.15: Same as Figure 7.14, but for u(H, φ) (from Lindzen and Hou, 1988). 
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Figure 7.16: Same as Figure 7.14, but for u(0, φ). 
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φ = φ1 (the latitude separating the northern and southern cells). As we saw 
in connection with the symmetric Hadley circulation (i.e., φ1 = 0), the angu­
lar momentum in the upper branch was actually characteristic of the entire 
ascending region. This was not such a significant issue in the symmetric case 
because the vertical velocity was a maximum at φ = φ1 = φ0 = 0◦. However, 
when φ0 = 0, then the maximum ascent no longer occurs at φ1; rather it 
occurs near φ0 where the characteristic angular momentum differs greatly 
from that at φ1. It should also be mentioned that in the continuous models, 
the temperature minimum at the equator is substantially diminished. 

The above discussion leads to only modest changes in the five points 
mentioned in Section 7.3.2. Item 5 is largely taken care of when one recog­
nizes that the Hadley circulation resulting from averaging winter and summer 
circulations is much larger than the circulation produced by equinoctial forc­
ing. Eddies are probably still needed for the following: 

1. to diminish the strength of the jet stream, and, relatedly, to maintain 
surface winds in middle and high latitudes; and 

2. to carry heat between the tropics and the poles. 

Lindzen and Hou (1988) stress that Hadley circulations mainly transport 
angular momentum into the winter hemisphere. Thus, to the extent that 
eddies are due to the instability of the jet, eddy transports are likely to be 
mostly present in the winter hemisphere. 

In this chapter we have seen how studying the symmetric circulation can 
tell us quite a lot about the real general circulation – even though a pure 
symmetric circulation is never observed. In the remainder of this volume, we 
will focus on the nature of the various eddies. Our view is that eddies are 
internal waves interacting with the ‘mean flow’. Forced waves lose energy to 
the mean flow, while unstable waves gain energy at the expense of the mean 
flow. 


