
 

T T  dM  Using  ,

s * M  ds  *
 

T  Ri   dM  We can re-write (18) as    . (19)o 
2 
c 
 M rt  ds  *  

2  1 ds * We can also re-write (6) Mb  rb  f  Tb  To   (20) 
as  2 dM  

ds | |3 
Boundary layer h b C V  s *  s   C 

V (21) | |kk 00 bb dd entropyentropy dtdt TTb 

Boundary layer dMh  rr | || |VV VVh  (22)angular momentum (22) dt 
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Combine (21) and (22):
 

dsb    
Ck 

 s  sb   
V0

* | |2 

dM CCD rVV TTbrVdM V
 

Let s  * | |VV  VV  V , r 
Let s  ss , | |   V r  rrb b b 

ds * CC  ss 00  s * VVds  * s 
     k  b (23)

dM C rV T r D  b b  b b  

Balance condition (8): 

Vb ds  * 
(24) 

rb 

 TTbb  TTo  dM  
(24) 
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 


    

Eliminate Vb between (23) and (24):
 

2 * 
 ds *  T C  s0  s * ( )   b k 

2 
(25) 

 dM  T C r T  T o D b b o 

Eliminate r 2 between (20) and (25): Eliminate rb between (20) and (25): 

 ds * 2 ds *  f 
 


  2   0,, (26) 

 dM  dM Tb  To 

T Ck s * s *where b 0   
T CD 2Mo

Remember that TT  Ri   dM   o Ri  c dM  
  (19)2  M rt  ds  *  
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Integrate (26) and (19) inward from some outer radius ro, 

defined such thatdefined such that 

VV  00 at  r  o at  r   rr 

In ggeneral,, integgratingg this syystem will not yyield Too=Ttt at 
r=rmax. Iterate value of rt until this condition is met. 

If V >>  fr we ignore dissipative heating and we neglect
 If V >> fr, we ignore dissipative heating, and we neglect 
pressure dependence of s0*, then we can derive an 
approximate closed-form solution. 
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 

         

Assuming that Ri is critical in the outflow leads to an 

equation for To that, coupled to the interior balance equation 
and the slab boundary layer lead (surprisingly!) to a closed 
form analytic solution for the gradient wind (as representedform analytic solution for the gradient wind (as represented
 
by angular momentum, M, at the top of the boundary layer:
 

 
2 

Ck2 2 
r 

C     M  CD rr M      (27)  
m 

2 ,
M    m C C r2  k  k 2 
   C C rmD D    
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 
 

                       
               

 
2 

   rC 
rok 

2 2 2   fr  C r o  m (28)  
D 

 2 . 
2V r   m m  C   m m   CC C    r rk k o2    C C rmD D    

1 
Ck1 2 1  1 Ck 2 r  fr V  CD (29)

m oo mm  2 222 C m 
 CD  

The maximum wind speed, V , found from maximizing the radial dependence of 
m

wind speed in the solution (27) is given by 

CkC2 C 

V CCD

k 

 V 22  22rrm  D (30)(30)
m p  2 fr o  
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2 CkV  T  T    s * s *p b t 0 eCDD 

Substituting (29) into (30) gives 

Ck 

CDD 

k 1 C 2 

C
C 

2 2 kV  V CD (31)m p  2 CCD2   
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 

Substituting (31) into (29) gives 

3 

11 2 frfr 2   orm 
 
 2   T T    s * s *b t 0 e 

Also, 

C2 2 CDr  r  Ri  t m cCk 
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Numerical integrations with RE87 model (no dissipative heating no Numerical integrations with RE87 model (no dissipative heating, no 
pressure dependence of k0*) : Left, regular variables; Right: Velocity 
scaled by (31) and time scaled by the inverse square-root of the 
enthalpy exchange coefficiententhalpy exchange coefficient. 
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        EffectsEffects ofof PressurePressure--DependenceDependence ofof
EffectsEffects ofof PressurePressure DependenceDependence ofof
 
Surface Saturation EnthalpySurface Saturation Enthalpy
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Relationship between potentialRelationship between potential 

intensity (PI) and intensity ofintensity (PI) and intensity of 


realreal tropicaltropical cyclonescyclones
realreal tropicaltropical cyclonescyclones
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Evolution with respect to time of maximum intensity
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Evolution with respect to time of maximum intensity, 
normalized by peak wind 
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Evolution curve of Atlantic storms whose lifetime maximum 
intensity is limited by declining potential intensity, but not by 
landfalllandfall 
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Evolution curve of WPAC storms whose lifetime maximum 

y  g p  intensityy is limited by declining potential intensityy,, but not byy 
landfall 
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CDF of normalized lifetime maximum wind speeds of North 
Atlantic tropical cyclones of tropical storm strength (18 m s−1) or 
greatergreater, for those storms whose lifetime maximum intensity wasfor those storms whose lifetime maximum intensity was 
limited by landfall. 
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CDF of normalized lifetime maximum wind speeds of 
Northwest Pacific tropical cyclones of tropical storm strength 
(18 m s−1) or greater for those storms whose lifetime (18 m s 1) or greater, for those storms whose lifetime 
maximum intensity was limited by landfall. 
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Evolution of Atlantic storms whose lifetime maximum intensity 
was limited byy landfall 
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Evolution of Pacific storms whose lifetime maximum intensity 
was limited byy landfall 
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Composite evolution of landfalling storms
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