Using

oT 0T dM

oT,
oM

We can re-write (18) as

We can also re-write (6) M,
as

Boundary layer h %
entropy dt
Boundary layer h dM

angular momentum t

"~y

Ri

os* oM ds*’

dM

2
f

l

ds*

)



Combine (21) and (22):

ds, C, (Sg_sb)_|V|2

dM  C, rv TV

(24)



Eliminate V, between (23) and (24):

(Ejz _ T, C (S; B S*) (25)
dM T C, 1’ (T,-T,)

Eliminate r 2 between (20) and (25):

* 2 *
(dij b2, 87 20 o (26
dM dM T, -T,

where _ Tb Ck So*_S*

Remember that oT Ri (dl\/lj



Integrate (26) and (19) inward from some outer radius r,,
defined such that

V=0 at r=r

o)

In general, integrating this system will not yield T =T, at
r=r.... lterate value of r, until this condition is met.

If V >> fr, we ignore dissipative heating, and we neglect
pressure dependence of s;*, then we can derive an
approximate closed-form solution.



Assuming that Ri is critical in the outflow leads to an
equation for T, that, coupled to the interior balance equation
and the slab boundary layer lead (surprisingly!) to a closed
form analytic solution for the gradient wind (as represented
by angular momentum, M, at the top of the boundary layer:




_
2erm 5 _ Ck N Ck I,
CD CD rm
1
Cy
S Vae] IS (29)
2 2C,

The maximum wind speed)/_, found from maximizing the radial dependence of
wind speed in the solution (27) is given by

Cy
S Co
v, =vp2(irr;] (30)
r

0]

6



\/25&
P CD

Substituting (29) into (30) gives

(To =T (S,

S, *—§ *

€

)

(31)



Substituting (31) into (29) gives

Also,



VIV

Numerical solution
Analytic approximation
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Wind Speed (m/s)

Wind Speed (m/s)
B
(=]
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Time (hours) 0 50 100 150 200 250
Time (hours)

Numerical integrations with RE87 model (no dissipative heating, no
pressure dependence of k,*) : Left, regular variables; Right: Velocity
scaled by (31) and time scaled by the inverse square-root of the
enthalpy exchange coefficient.
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Effects of Pressure-Dependence of
Surface Saturation Enthalpy
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Relationship between potential
intensity (Pl) and intensity of
real tropical cyclones
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Cumulative Frequency
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Evolution with respect to time of maximum intensity
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Evolution with respect to time of maximum intensity,
normalized by peak wind
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Evolution curve of Atlantic storms whose lifetime maximum
intensity is limited by declining potential intensity, but not by
landfall  (q)
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Evolution curve of WPAC storms whose lifetime maximum
intensity is limited by declining potential intensity, but not by
landfall (b)
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CDF of normalized lifetime maximum wind speeds of North
Atlantic tropical cyclones of tropical storm strength (18 m s—1) or
greater, for those storms whose lifetime maximum intensity was

limited by landfall. (a) *-
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CDF of normalized lifetime maximum wind speeds of
Northwest Pacific tropical cyclones of tropical storm strength
(18 m s—1) or greater, for those storms whose lifetime
maximum intensity was limited by landfall.
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Evolution of Atlantic storms whose lifetime maximum intensity
was limited by landfall
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Evolution of Pacific storms whose lifetime maximum intensity

was limited by landfall
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Composite evolution of landfalling storms
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