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Chapter 7 

Passive tracer spectra and 3D 
turbulence 

For a passive scalar which obeys an equation of the form , 

∂θ 
+ u · ∇θ = κ∇2θ, (7.1)

∂t 

we can write an equation for the variance 〈θ2〉, 
∂〈θ2〉 

+ ∇ · 〈uθ2〉 = −κ〈|∇θ|2〉. (7.2)
∂t 

We assumed without loss of generality that 〈θ〉 = 0. Under the assumption that 
the tracer statistics are homogeneous and isotropic, we can write an equation for the 
spectrum P (k) of this variance, analogous to (6.28), 

2κk2P (k) =  T (k) +  F (k), (7.3) 

where T (k) is the nonlinear transfer of tracer variance, and F (k) is  an  external  source  
of tracer variance. Two of the results derived for the kinetic energy spectrum carry 
over to the tracer spectrum problem. (1) The dissipation of variance χ must equal 
the total injection of variance 0 

∞ F (k)dk. (2) At wavenumbers far from the injection 
scale and dissipation scale, variance is fluxed at a constant rate χ (set by the injection 
rate). Using these two results, we can derive the form of the spectrum P (k). Notice 
however that there is a major difference between the kinetic energy and the tracer 
problems. In the tracer inertial range χ and k are not the only relevant parameters, 
since the tracer field is subject to stirring by the flow. The flow parameters (e.g., ε) 
also influence the tracer field. 

We can derive the shape of the tracer spectrum in the range of wavenumbers where 
both tracer and momentum dissipation can be neglected. Once again we assume that 
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forcing is confined to large scales. In the so-called inertial-convective range the fluxes 
of kinetic energy and tracer variance must be constant, if a statistically steady sate 
is to be achieved. Thus we can state, in analogy to Obukhov’s argument for kinetic 
energy, that the tracer flux is given by the available variance at wavenumber k divided 
by the eddy turnover timescale, 

kP (k)
χ ∼ . (7.4)

τ 
Assuming that eddy stirring is dominated by local interactions we can write that 
τ = [k3E(k)]−1/2. But  χ is a constant and therefore we have, 

P (k) ∼ χk−5/2E(k)−1/2 (7.5) 

Substituting for E(K) from K41  we  have,  

P (k) =  βχε−1/3k−5/3 (7.6) 

where β is some universal constant. The tracer spectrum in the inertial-convective 
range has the same slope as the kinetic energy spectrum and is known as the Obukhov-
Corrsin spectrum. 

Length scales 

The kinetic energy spectrum becomes influenced by viscosity at a wavenumber kd such 
that Re ∼ 1. In order to estimate the Reynolds number at a particular lengthscale, 
we need a scaling for the velocity field. Using K41 we have, 

〈δvr 
2〉 ∼ (εr)2/3 =⇒ vr ∼ (εr)1/3 , (7.7) 

where vr is an order of magnitude estimate of the velocity at a lengthscale r. Then  

vrr 
Rer ∼ . (7.8)

ν 

Setting Rer ∼ 1, we find that viscosity becomes important at the scale 1/r = kd ∼ 
(ε/ν3)1/4, the Kolmogorov scale. 

By analogy with the kinetic energy spectrum, the passive tracer spectrum becomes 
influenced by diffusion at a wavenumber kc, where the Peclet number ∼ 1. We have 
two different scenarios, depending on whether the wavenumber kc is smaller or larger 
than the Kolmogorov wavenumber kd. 

If the Prandtl number Pr  = ν/κ < 1, then the dissipation scale kc occurs within the 
inertial range (kc < kd). Plugging vr ∼ (εr)1/3 in the definition of the Peclet number, 

vrr 
Per ∼ , (7.9)

κ 
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we find that Per ∼ 1 is achieved at a wavenumber 1/r = kc ∼ (ε/κ3)1/4 = Pr3/4kd. 

However, if diffusion becomes important at wavenumbers larger than viscosity does 
(i.e. Pr  >  1), kc does not lie within the inertial range, so we cannot use the inertial 
range  scaling to obtain  vr; if the energy spectrum E(k) drops off more rapidly than 
k−3, then  (δvr)

2 cannot be calculated from (6.50). In this range the velocity spectrum 
drops off exponentially to zero. Thus at scales k shorter than the Klolmogorov scale, 
the tracer is not stirred by eddies with scale k because such eddies do not exist. At 
these scales the trcaer is stirred by the smallest scales present in the flow, i.e. by 
eddies at the Kolmogorv scale. For these eddies vr ∼ (ε/kd)

1/3 ∼ νkd. Smaller scale 
features feel this as a ”large-scale” flow. Then the local Peclet number at a scale r is, 

vrr νkdr 
Per = = . (7.10)

κ κ 

By definition Per ∼ 1 when  r = 1/kc, the wavenumber at which diffusion becomes 
important. Thus, 

ν 
kc ∼ kd. (7.11)

κ 

Depending on the relative length of the viscous and dissipative cutoff scales, the 
passive tracer tracer spectrum has several different subranges. For ki << k, and  
k << kd and k << kc, neither κ nor ν are important.  This is the  inertial-convective 
range considered above. If k << kd, but k > kc (for Pr  <  1) then κ is important, 
but not ν: the spectrum is in an inertial-diffusive range. If  k << kc, but k > kd 

(for Pr  >  1), then ν is important but not κ: the spectrum is in an viscous-convective 
range. Finally for k > kd and k > kc, the spectrum is in a viscous-diffusive range. 
We consider the spectrum in each of these subranges separately. 

Inertial-diffusive subrange 

In the inertial diffusive range the flux of variance is no longer constant with k, since  
diffusion is acting to reduce it. Instead, from (7.3), 

dΠ 
T (k) =  − = 2κk2P (k). (7.12)

dk 

The flux Π(k) is not a constant in k in this range. Using Obukhov’s argument we 
can also write, 

kP (k)
Π(k) =  . (7.13)

[k3E(k)]−1/2 

Inertial range scaling for the energy still applies, so we can use K41 to express E(k) 
and we find that, 

P (k) ∼ Π(k)k−5/2E(k)−1/2 = βε−1/3k−5/3Π(k). (7.14) 
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Substituting for P (k) in (7.12) we have, 

dΠ 
dk 

= −2βκε−1/3k1/3Π(k). (7.15) 

Solving for Π(k) we get,  

Π(k) =  χ exp 
[ 

− 
3 
2 
βκε−1/3k4/3 

] 

. (7.16) 

If we substitute back into (7.14) we find,   

P (k) =  βε−1/3k−5/3χ exp − 
3 
2 
β 

( 
k 
kc 

)4/3  (7.17) 

where kc = (ε/κ3)1/4 . Hence the spectrum of tracer variance behaves exponentially 
for k > kd when Pr  <  1. This spectrum is not valid far into the inertial-diffusive 
subrange because it assumes Π(k) varies only slowly with k. (An alternative theory 
of Batchelor et al. (1959) gives a k−17/3 spectrum. Neither form of the spectrum has 
been verified.) 

Viscous-convective subrange 

For Pr  >  1 and  k > kd, but k < kc, the flux of variance Π(k) is constant: Π(k) =  χ. 
κ is not important, but ν is. The energy field drops off rapidly for k > kd. Hence the 
scalar perturbations experience a shear corresponding to that at a scale kd, vkdkd = 
(ε/ν)1/2. At  k > kd this shear appears like a smooth large-scale flow. P (k) must  
satisfy, 

kP (k)
χ = . (7.18)

[kd
3E(kd)]−1/2 

Plugging the expression for the Kolmogorov wavenumber kd, 

ε )−1/2 

P (k) =  CBχk−1 . (7.19)
ν 

This is known as the Batchelor spectrum, and  CB is the Batchelor constant. 

There is experimental evidence for the Batchelor spectrum. Gibson and Schwarz 
(JFM, 1963) observed the Batchelor spectrum for temperature and salinity in labora
tory measurements in water, and the approximate behavior for temperature spectrum 
is also suggested by field measurements of Grant et al. (JFM, 1968), Oakey and El
liott (JPO, 1982) and others. There is however a wide scatter in the predicted values 
of the universal constant CB. The practical importance of these spectral expressions 
lies in the fact that all scalar fluctuations and scalar dissipation are effectively deter
mined by scales from the Batchelor range. The dissipation rates in turn determine 
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the mixing coefficients for scalars which are critical to understand small-scale physics 
of the oceans and large scale circulation and global climate. The knowledge of spatial 
power spectra of temperature fluctuations at small scales is also needed in treating 
problems of sound and light propagation in water. 

Further reading: Lesieur, Ch VI; Tennekes and Lumley, Ch 8. 
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