12.842 / 12.301 Past and Present Climate Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## 12.842 Climate Physics and Chemistry Fall 2008

Changes in CO<sub>2</sub> during the past million years

# Gases in Ice Cores

- Bubbles seal off at the bottom of the firn layer, ~80-120 m
- Hence gas is younger than the solid ice that contains it
  the "gas age/ice age difference" depends on the accumulation rate
- Most gases are well mixed in atmosphere; so records from Antarctic and Greenland are nearly the same; features of the records can be used to correlate chronologies between hemispheres
- Gases that have been measured:
  - $-CO_2$
  - $O_2 (^{18}O/^{16}O \text{ ratio})$
  - $-CH_4$
  - $N_2O$

Recall: Ice core evidence for changes in atmospheric  $CO_2$ 

- Pre-anthropogenic p<sub>CO2</sub> was about 280 ppmV
- Glacial p<sub>CO2</sub> was about 190 ppmV. Six Antarctic ice cores give same number.



Data from Petit et al (1999) Nature, 419:188-190

Image removed due to copyright restrictions.

 $\delta^{18}$ O and CH<sub>4</sub> in Greenland and Antarctica Image removed due to copyright restrictions.

Ahn and Brook (2008) Science 322:83. Figure 1.

Image removed due to copyright restrictions.

Ahn and Brook (2008) Science 322:83. Figure 2.

Some Concepts to Explain Glacial-Interglacial CO<sub>2</sub> cycles

## Role of Temperature in G/IG CO<sub>2</sub> cycles

- CO<sub>2</sub> is more soluble in cold water than in warm water so if the ocean temperature cools during ice ages, atm. CO<sub>2</sub> should be lower because more ends up in the ocean.
- Given an estimate of ocean surface temperatures, we can readily calculate how much more  $CO_2$  ends up in the ocean.
- Although our knowledge of ocean surface temperatures during the Last Glacial Maximum (LGM) is imperfect, we can make a reasonable estimate:
  - -5°C in low-latitude ocean (probably an extreme possibility)
  - -2.5 in high-latitude ocean (can't get any colder than the

freezing point)

- This would lead to a -30 ppmV drop in atmospheric CO<sub>2</sub>.
- This is significant but only ~ 30% of the total. And..

### Factors offsetting the decrease due to cooler temperatures:

- The withdrawal of seawater into continental glaciers leave the ocean saltiers, and CO<sub>2</sub> is less soluble in saltier waters (approximate magnitude: +6.5 ppmV)
- The glaciers and cooler climate also reduced the continental biomass putting more carbon in the ocean, and thereby *increasing* atmospheric CO<sub>2</sub>. Carbon isotope observations imply a whole-ocean  $\delta^{13}$ C decrease of -0.35 % during the LGM (presumed due to the oxidation and solubilization of the biomass) which would lead initially to a +15 ppmV increase in CO<sub>2</sub>.
- After taking all of these things into account, the decrease in atmospheric CO<sub>2</sub> due to all of these easy-to-estimate factors is 8.5 ppmV.
- We are a long way from accounting for glacial  $CO_2$ !

## Simple two-box ocean model



#### Broecker's 2-box interglacial ocean:





(Assumes that marine organic matter from continental shelf is oxidized and put into ocean and that sedimentary  $CaCO_3$  dissolves to keep  $[CO_3^{=}]$  of deep ocean approximately constant)

### Broecker's interglacial/glacial oceans:

#### Interglacial

#### Glacial



(Assumes that marine organic matter from continental shelf is oxidized and put into ocean and that sedimentary  $CaCO_3$  dissolves to keep  $[CO_3^{=}]$  of deep ocean is approximately constant)

#### Toggweiler-Sarmiento (1984) 3-box model for interglacial / glacial CO<sub>2</sub>



Steady state concentrations of model variables in the ocean and atmospheric boxes for the preindustrial and ice age simulations. Units are micromoles per kilogram for AOU, PO<sub>4</sub>, and  $\Sigma$ CO<sub>2</sub>; microequivalents per kilogram for alkalinity, parts per million for PCO<sub>2</sub>; and parts per thousand (per mil) for  $\delta^{13}$ C and  $\Delta^{14}$ C. Model transports between boxes are given in units of sverdrups ( $10^6$ m<sup>3</sup>/s). Particle fluxes are given next to the wiggly arrows in units of moles C per square meter per year. Asterisks indicate values that are initial assumptions.

Figure by MIT OpenCourseWare.

see also: Knox and McElroy, Wenk and Siegenthaler

This model suggests that the pre-formed nutrient content of polar surface waters decreases during glacial period (often pointing to increased high-latitude stratification as the mechanism for achieving higher nutrient utilization.

An alternative proposal for the mechanism of nutrient depletion is the "Martin Hypothesis" that says that Fe limits Antarctic productivity and that this limitation is diminished during glacial periods by a higher dust flux to polar regions (see ice core data).

Fig. 7. Steady state concentrations of model variables in the ocean and atmospheric boxes for the preindustrial and ice age simulations. Units are micromoles per kilogram for AOU, PO4, and ECO2; microequivalents per kilogram for alkalinity, parts per million for PCO2; and parts per thousand (per mil) for  $\delta^{13}$ C and  $\Delta^{14}$ C. Model transports between boxes are given in units of sverdrups (10<sup>6</sup> m<sup>3</sup>/s). Particle fluxes are given next to the wiggly arrows in units of moles C per square meter per year. Asterisks indicate values that are initial assumptions.

### The nitrogen fixation / inventory hypothesis (McElroy, Broecker, others...)

- This hypothesis assumes that N is the limiting nutrient (instead of P). In other words, that the C:N ratio is fixed but the C:P ratio is flexible.
- The residence time of  $NO_3^-$  in the ocean is on the order of thousands of years. If something perturbs the input/output balance, the nitrate concentration can respond relatively quickly.
- Things that could perturb the nitrate balance:
- More dust, more N fixation (until oxygen loss increases denitrification)
- Changes in ocean circulation that diminish the low- $O_2$  zones (inferred from  $\delta^{15}N$  W. N. Pacific and Arabian Sea - possibly but not necessarily related to ocean nutrient deepening)
- Otherwise works the same as the "shelf phosphorus" model.

### Some Reading

Broecker W. S. (1982) Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689-1705.

Sigman, D. and E. Boyle (2000) Glacial/Interglacial variations in atmospheric carbon dioxide, Nature 407:859-869.

Sarmiento, J.L. and R. Toggweiler (1984) A new model for the role of the oceans in determining atmospheric  $p_{CO2}$ , Nature 308:621-624.