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Q1. Fig. ?? depicts a representation of f (x) by the values fi at points xi 

with variable grid-spacing �x
i+ 1 

2 
such that �x


i+ 1 
2 

= xi+1 − xi. Using Taylor 
series, derive a second order finite-difference approximation to �xf at the 
location xi using a three point stencil involving fi−1, fi and fi+1. 
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Figure 1: Three point stencil on a variable resolution grid. 

Q2.a Assume a regular grid with index i such that xi = i�x and function 
values fi = f (xi). The expression 

fi+1 − fi 
= �xf + O(�x) (1) 

x

�x 

is a “side difference” approximation of order O(�x) for �xf evaluated at the 
i point. 

i) Derive the actual truncation error terms out to order �x2 . 
ii) Derive an approximation for �xxf evaluated at the same point, xi, that 

uses the values fi−1, fi and fi+1. 
iii) Substitute your approximation to �xxf from (ii) into the leading trun­

cation term in equation (??). What is the leading order truncation term and 
resulting scheme? 

Q2.b On a regular grid (spacing �x), the second order, centered approxi­
mation of the first derivative at a grid-node, xi, is 

fi+1 − fi−1 
= �xf + O(�x 2). (2)

2�x 

i) Derive the leading order truncation error in (??). 
ii) Using the stencil (fi−2, fi−1, fi, fi+1) write a finite difference approxi­

mation for �xxxf . 
iii) Substitute your approximation from (ii) into the leading order error 

term of the approximation to �xf in equation (??) and re-evaluate the trun­
cation error of the resulting expression. This is an approximation for �xf of 
what order? 
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Q2.c Do you see the pattern behind the methods you used in Q2.a and b. 
Briefly explain, how you would derive an O(�xn) approximation to a finite 
difference expression if you were given an O(�xn−1) finite difference expres­
sion. 

Q3. Assume a regular grid as in Q2.a. 
i) Derive a second order expression of a similar form as (??) but using 

only the values fi−2 and fi+2. 
ii) Linearly combine your approximations from (i) and the approximation 

in equation (??) to yield a O(�x4) approximation for �xf at xi. 

Q4. The linear advection problem 

�t β + u�xβ = 0 (3) 

can be written in the flux form 

�tβ + �xF = 0 where F = uβ. 

Here F is an advective flux and u is the constant flow speed. We will assume 
that u > 0 for this discussion. We wish to discretize the flux-form as 

F − F
i+ 1

2 i− 1
2 

1 
�tβ + = 0 or �tβ + αiF = 0 (4)

�x �x 

on the regular grid of Q2.a. We will assume perfect derivatives in time. 
i) Write down an O(�x3) approximation for F

i+ 1 
2 

in terms of βi−1, βi, 
βi+1. This is known as the third-order, upwind-biased flux because u > 0. 

ii) Substitute your O(�x3) expressions for F
i+ 1

2 
and F


i− 1
2 

into equation

(??) and derive the leading order truncation error. We substituted a third 
order approximation of the flux so why is the approximation to the governing 
equation not third order? 

iii) Write down the O(�x3) finite difference approximate to equation (??) 
evaluated at xi using the stencil (βi−2, βi−1, βi, βi+1). 

iv) The approximation to the term c�xβ you used in (iii) takes the form 

aβi−2 + bβi−1 + cβi + dβi+1 

or 
[a b c d] 



� � �
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using stencil short-hand. Let us write this stencil as the difference between 
two stencils of the same but shifted form: 

[a b c d] = [0 � γ �] − [� γ � 0]. 

Find �, γ and �. Deduce an approximation for the the flux F
i+ 1

2 
that yields 

an O(�x3) approximation to the linear advection problem (??). 

Q5 (MATLAB) 
Build a model that integrates the linear advection equation 

�t β + u�xβ = 0 

in the periodic domain 0 � x � 1 which is divided into N even intervals, 
�x = 1/N . u = 1 is a constant flow. Use the flux-form and march the 
system forward as follows: 

�t 
β(n+1) = β(n) − (F 1 − F
 1 )

�x i+ i− 
22 

where the superscript (n) is the time-level. Note: this is the forward scheme 
and as a rough rule will not work for many advection schemes - but it will 

1 �xwork for the schemes you will try here. For this problem set, use �t = 
100 u . 

The initial conditions will be a unit amplitude cosine-bell given by: 

1 1 
β(x, t = 0) = 1 + cos ∂ min [1, |4(x − )|]

2 2 

Start by using the “upwind” scheme which corresponds to a flux given by 

F

i+ 1

2 
= uβi. 

You will know you have debugged your model when the range of values of 
your solution are within those of the initial conditions (using the upwind 
scheme and for the given parameters). 

i) Plot the initial conditions and solutions at time t = 1 for N = 10, 20, 40, 80. 
ii) At each resolution, measure the l1, l2 and l

� norms. Plot them as a 
function of grid-spacing and measure the power dependence of the l2 curve 
on �x. 

iii) Repeat (i) and (ii) using the two forms of “third” order flux in Q4. 
Which is more accurate? 

iv) Why is the dependence not what you would expect, given all the effort 
you put into deriving the truncation errors in the previous questions? 


