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1 12.950 Answers to Problem Set 1, Spring ’04 

f

Q1. Using Taylor series, derive a second order finite-difference approxima­
tion to �xf at the location xi using a three point stencil involving fi−1, fi and 

i+1. 
Taylor series for fi±1 at x = xi are 

2 3�x
i± 1 �x

i± 1 �x
i± 1 

f � f �� f f2 2 2fi±1 = fi±�x (xi)+ (xi)± (xi)+ (xi)+H.O.T. 
i±

1

2 2
 3! 4! 

We pose that f �(xi) can be expressed as 
2f �(xi) = afi+1 + bfi + cfi−1 + O(�x ) 

and substitute fi±1 with their Taylor series. Collecting like terms, we see 
that 

a + b + c = 0, 
�x �x

i−i+
1

2 
1

2 1,
− ca = 
2 2 
2 2�x �x

i+

1

2 
1

2 i− 
0.+ ca =


6 6 
The solution to the last two equations is 

1 �
i− 1 �2 

i− 1 
2 2a =
 = � ⎛ 

+ � (�
i− + � )�

i+i−
1

2 i+
1

2 
1

2 
1

2 i+
1

2 
1

2 
1

2 i−i+ 

−�2 
−1 �

i+
1

2 
1

2 i+ 
c = = � ⎛ 

+ � (�
i− + � )�

i+i−
1

2 i+
1

2 
1

2 
1

2 
1

2 
1

2 
1

2 i− i−i+ 

and using the first equation, b = −a − c, gives 

�2 
− �2 

i− 11

2 i+ 
2b = . 

(�
i−

1

2 
+ � )�

i+ �
i−

1

2 
1

2 
1

2 i+ 

The full expression for �xf (xi) is 

�2 fi+1 + (�2 
i+ − �2 )fi − �2 

i+ fi−11

2 
1

2 
1

2 
1

2 i− i− 
f �(xi) � . 

(�
i− 1 + � )�

i+
1 �

i− 11
i+ 

2222 

Note that this can be written 

fi+1 − fi �
i+

1

2 
fi − fi−1i−

1

2f �(xi) � ⎛ + .� ⎛� � ⎛� ⎛ 
+ � + �

i−
1

2 i+
1

2 i+
1

2 i−
1

2 i+
1

2 i−
1

2 
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Q2.a i) Derive the actual truncation error terms out to order �x2 . 

fi+1 − fi 1 1 
3= f �(xi) + �xf ��(xi) + �x 2f ���(xi) + O(�x )

�x 2 6 
ii) Derive an approximation for �xxf evaluated at the same point, xi, that 

uses the values fi−1, fi and fi+1. 

f ��(xi) = 
fi+1 − 2fi + fi−1 

+ O(�x 2f ����)
�x2 

iii) Substitute your approximation to �xxf from (ii) into the leading trun­
cation term. What is the leading order truncation term and resulting scheme? 

fi+1 − fi 
= f �(xi) + 

1 fi+1 − 2fi + fi−1 1 
�x + �x 2f ���(xi) + O(�x 3)

�x 2 �x2 6 
or, moving the terms in fi−1, fi and fi+1 to the L.H.S., 

fi+1 − fi−1 
= f �(xi) + 

1
�x 2f ���(xi) + O(�x 4)

2�x 6 

The largest remaining truncation term is O(�x2) and so this is a centered 
second order difference approximation to �xf at x = xi (i.e. f �(xi)). 

Q2.b i) Derive the leading order truncation error. 
As above:


1 
3
fi+1 − fi−1 

= f �(xi) + �x 2f ���(xi) + O(�x ) 

f 

2�x 6 
ii) Using the stencil (fi−2, fi−1, fi, fi+1) write a finite difference approx­

imation for �xxxf . 

���(xi) = 
fi+1 − 3fi + 3fi−1 − fi−2 

+ O(�x)
�x3 

iii) Substitute your approximation from (ii) into the leading order error 
term of the approximation to �xf . This is an approximation for �xf of what 
order? 

fi+1 − fi−1 
= f �(xi) + 

1 
2 fi+1 − 3fi + 3fi−1 − fi−2

�x + O(�x 3) 

2f

2�x 6 �x3 

or, moving the terms in fi−2, fi−1, fi and fi+1 to the L.H.S., 

i+1 + 3fi − 6fi−1 + fi−2 3= f �(xi) + O(�x )
6�x


This is a third order difference approximation to f �(xi).
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Q2.c Do you see the pattern behind the methods you used in Q2.a and b. 
Briefly explain, how you would derive an O(�xn) approximation to a finite 
difference expression if you were given an O(�xn−1) finite difference expres­
sion. 

Replacing the leading Taylor series term in a finite difference approxima­
tion with a finite difference approximation of that term results in a higher 
order scheme. 

Q3. i) Derive a second order expression of a similar form as before but 
using only the values fi−2 and fi+2. 

Literally replacing �x with 2�x: 

fi+2 − fi−2 
= f �(xi) + 

4
�x 2f ���(xi) + O(�x 4)

4�x 6 

ii) Linearly combine your approximations from (i) and the former ap­
proximation to yield a O(�x4) approximation for �xf at xi. 

⎝ ⎞

fi+2 − fi−2 4 
a + b

fi+1 − fi−1 
= a f �(xi) + �x 2f ���(xi)

4�x 2�x 6 
⎝ ⎞

1 
+b f �(xi) + �x 2f ���(xi) + O(�x 4)

6 

To eliminate the O(�x2) terms and obtain an expression for f �(xi) we must 
solve 

a + b = 1 
4 1 
a + b = 0 

6 6 

the solution to which is 

−1 4 
a = and b = . 

3 3 

The resulting O(�x4) approximation to f �(xi) is 

−fi+2 + 8fi+1 − 8fi−1 + fi−2 4= f �(xi) + O(�x )
12�x 
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i) Write down an O(�x3) approximation for F in terms of ∂i−1, ∂i,Q4. 
i+

1

2 
∂i+1. 

are:Taylor series for ∂i−1, ∂i and ∂i+1 about x = x 1

2 i+ 

�x2�x 
∂� ∂ 3∂i+1 = ∂(x

∂i = ∂(x

∂i−1 = ∂(x

) + (x
i+

1

2 
) +


22 
(x ) + O(�x
 )1

2 
1

2 i+ i+2 .2! 
2�x �x


∂� ∂ 3) − (x ) + (x ) + O(�x )1 1 1
i+ i+ i+22 .2!22 2 2 

23�x 32�x
∂� ∂ 3) − (x ) + (x ) + O(�x )1 1 1

i+ i+ i+222 .2!2 2 2 

We want an O(�x3) approximation for ∂(x ) in the form 1

2 i+ 

3a∂i+1 + b∂i + c∂i−1 = ∂(x ) + O(�x )1

2 i+ 

so 

a + b + c = 1 

a − b − 3c = 0 

a + b + 9c = 0 

First + last equations give 8c = −1. Last two give 2a = −6c. Difference of 
last two give 2b = −12c. 

3 6 −1 
a = 

8 
; b = 

8 
; c = 

8 

Third order interpolation for ∂(x
i+

1

2 
) gives the stencil 
⎠ �

−1 6 3 
u [c b a] = u 

8 8 8 

for F
i+

1

2 
. 

ii) Substitute your O(�x3) expressions for F
i+

1

2 
and F

i−
1

2 
in and derive 

the leading order truncation error. 
We need Taylor series expanded about x = xi:


�x3
�x2 

∂∂i+1 = ∂(xi) + �x∂�(xi) + ∂��(xi) + (xi) + O(�x 4)
2! 3! 

�x3�x2 

∂��(xi) − ∂���∂i−1 = ∂(xi) − �x∂� (xi) + (xi) + O(�x 4)
2! 3! 

2 23�x322�x
∂��(xi) − ∂���∂i−2 = ∂(xi) − 2�x∂�(xi) + (xi) + O(�x 4)

2! 3! 
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u 
�t∂i + [a∂i+1 + (b − a)∂i + (c − b)∂i−1 − c∂i−2]

�x

u∂i


= �t∂i +(a + (b − a) + (c − b) − c) 
�x


+(a + 0(b − a) − (c − b) + 2c)u∂�


u�x

∂+(a + 0(b − a) + (c − b) − 22 c) 

2! 
u�x2 

∂+(a + 0(b − a) − (c − b) + 23 c) + O(�x 3)
3! 

2∂��� = �t∂i +0∂i + (a + b + c)u∂� + (a − b − 3c)u�x∂�� + (a + b + 7c)u�x + O(�x 3) 
2∂��� = �t∂i +u∂� + 2u�x + O(�x 3) 

So the O(�x2) remains (since a + b − 7c = 10/8) and the governing equation 
is only second order, not third order accurate, in �x. 

We substituted a third order approximation of the flux so why is the ap­
proximation to the governing equation not third order? 

The difference approximation of �xF 

F
i+

1

2 
− F

i− 
�xF � 

1

2 

�x


is only second order accurate. No matter how accurate we make F , there will

be a second order truncation error unless we can construct the truncation

errors in F


i+
1

2 
and F


i−
1

2 
so as to cancel each other. As we do next...


iii) Write down the O(�x3) finite difference approximation to the gov­
erning equation evaluated at xi using the stencil (∂i−2, ∂i−1, ∂i, ∂i+1). 

⎠ � 
u 2 3 1 

�t∂i + ∂i+1 + ∂i − ∂i−1 + ∂i−2
�x 6 6 6 

iii) Deduce an approximation for the flux F
i+

1

2 
that yields an O(�x
3) 

approximation to the linear advection problem. 
⎠ �

1 −6 3 2 
= [−� � − γ γ − � �]

6 6 6 6 

Solving for �, γ and �: 

−1 5 2 
� = ; γ = ; � = 

6 6 6 
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Q5 (MATLAB)

i) Plot the initial conditions and solutions at time t = 1 for N = 10, 20, 40, 80.


0 0.2 0.4 0.6 0.8 1 
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Analytic 
N=10 
N=20 
N=40 
N=80 

ii) At each resolution, measure the l1, l2 and l� norms. Plot them as a 
function of grid-spacing and measure the power dependence of the l2 curve 
on �x. 
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A fit to the l2-norm points gives a power of �x0.4 . 
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iii) Repeat (i) and (ii) using the two forms of “third” order flux in Q4. 
Which is more accurate? 

Third order flux (1/6 form) 

E
rr

or
	

θ 
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A fit to the l2-norm points gives a power of �x2.1 . 
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Third order flux (1/8 form) 
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1A fit to the l2-norm points gives a power of �x1.8 . Using 
6 form is more 

accurate than the 1 form, consistent with the analysis. 
8 

iv) Why is the dependence not what you would expect, given all the effort 
you put into deriving the truncation errors in the previous questions? 

We are using the forward time-stepping scheme which is of order �t. 
Although �t was reduced with �x, the first order accuracy of the time 
differencing error dominates and higher order errors in the spatial differences. 


