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Q1. Third order, direct space time method. i) Derive a third or-
der accurate (time and space) finite difference approximation to the linear

advection problem
00 + cd,0 =0 (1)

where ¢ > 0 a positive constant flow. The resulting scheme should take the

form
1

C
O = 07) = = (007 + A0 + 567 + af) @)

where «, 3, v and § are factors that you will determine. Assume a regular
grid with index i such that z; = iAz and ; = 6(x;). Hint: You will need
higher time derivatives of the above governing equation to eliminate the first
and second order time truncation terms.

Answer: Substituting in the Taylor expansion for each of 07, 67 ,, O,

and 07, the higher order derivatives Ouf) = 20,20 and 0p 0 = —c30,,0 we
get
1 n n C n n n n
E(ei T —07) + E(Miﬁ +70;, + B0} + b} 4)
At At?
= O+ 5040+ S0l + é(a oyt Bt )i+ (=26 — vy + )d,0
A Ax?
_’_%(45 +7+ a>axx9 + ‘ 3'1' <_85 -+ a)amc:pe + O(Atsv A$3)

= 00+ c(—20 — v+ )00
+ 5047+ B+ a),

A
3A 2 A 2

Eliminating all terms that do not appear in the governing equation we find

d+y+B+a = 0

—20—v+a =1
b+v+a = —C

-8 —v+a = C?

where C' = %t.
X

g = —a—vy—9
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v = —1l+a—-2)
204+2a0 = 1-C
—45+2a = —C(1-0C)
Solving for o, 3, v and §
60 = (1+C)(1-0)=1-C?
6a = 2-0)(1-C)=2-30C+C?
6y —6—-3C(1—-C)=—6-3C+3C*
68 = 3+6C —3C?

ii) Derive the discrete flux F' that when used in the difference equation

1

n+1
At AL

—67) = -

1
E(Fwé - szé)

(3)

makes it equivalent to the difference equation (1). Hint: F takes the form

Fiy =

D=

where dy and d; are functions of the Courant number, C' =

cl0; 4 dy(6; — 0 1) + do(Bi 11 — 6))]

(4)

cAt

Answer: Given that the flux takes the form or (4) we can write out (3)

in terms of 0 alone:

1 c
SO =07 = = [0 dy (87— ) + do(6y — )
=07y — dy (07 — O},) — do(0 — 607",)]
c
= —A—x[dlé’f_g (—1+do—2dy)0!
+(1 = 2dp + d1)0} + do07, |]
= 00, + A0, 4 B9 + b ]
Equating coefficients gives:
1
&b = a=-2-0)1-C)
1
i = §=2(1+C)(1-C)



12.950 Problem Set 2, Spring 04 3

Matching the other two coefficients supply a sanity check:

iii) Consider this flux in the limit of vanishing Courant number. What dis-

cretization does this correspond to (see your previous problem set)?
Answer: In the limit of C — 0, dy — % and d; — %. This looks like

the third order finite difference flux obtained by considering only the spatial

truncation errors (as in problem set 1).

Q2. Finite volume method Again, consider the linear advection prob-
lem cast in flux form (3) where F' = ¢f with ¢ > 0 on a regular grid. We will
consider the flux of properties across the point z = x, L as the average of
the upstream time-average of

1 Tipl
Fa—— / 2 9(x)d
Iy S (5)

i) Consider the distribution of 6 at time t = nAt assuming that 6 is piecewise
constant in the finite volume Az around each point x; (i.e. € is constant with
value 0; between x; — %A:c and x; + %Am)
a) Evaluate F, 11 in equation (5). You may assume that At < Ax/c.
Answer:
1 Tipl 1
Fy =75 /wi;_cm 01 dw = - [0ia ) ns = by

b) What is this scheme usually called?
Answer: It is the F.T.U.S. scheme.
¢) To make this calculation, why is it useful to assume At < Ax/c?
Answer: Because the value of 6 is discontinuous at a distance cAt to the
left of x;, 1.
d) Now re-evaluate F, 1 in equation (5), this time assuming Az/c < At <
2Azx/c.
Answer:

D=
Il
|
~
¥
| Nl
o
L
>
—
=
QL
S
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1 T, 1
= —/ i 0(x) dx
At zi+l—AJ:—c/At
2
1—Adf

1 mi+% 1 ‘zi+_
= - QZ dx + — 2 91‘_ dx
At Li+lAz At T 1 —Az—c'At !
2 3
1

1
= sz‘x]gm + E[Qi_lx]ﬂdm
Az Ax Ax

f— JE—— /4 — — - _ —
= Atﬁl—i—cﬁl,l Atﬁﬁ—(c A7

)0i1
e) Generalize you answers for (a) and (d) so that you can evaluate F) 11 using

one expression assuming At < 2Az/c. Hint: you will need to use the min
and max functions:

) a if a<b
min(a,b) = { b oif a>b
a if a>b
maz(a,b) = { boif a<b
Answer:
A A A
Fiy 1 = min (c, Kj)@l + <max (c, A—f) — Kj) 0;_1

ii) Consider the distribution of 6 at time ¢t = nAt to be piecewise linear
between the nodes z;.

a) Write down 6 as a function of z in the interval x; < x < x;,,. Hint: this
is simply linear interpolation between the values 6; and 6, ;.

Answer:
(xi—i-l — l’)ez + (,T - .CL’Z')HZ'_H
0 -
() N
(B2 — 2)0; + (52 + )0
= -2 Aas2 where x’:x—xH%

b) Evaluate Fj 1 in equation (5) assuming a piecewise linear distribution.
You may assume that At < %Ax/ c.
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Answer:

=

1 x¢+%
- 6(z)d
AL
2
1 0

_ N, r_
= 0(x")dz" where =z =T =Ty

At J-ent
_ é _OcAt%(0i+0i+1)dx’+ é | OcAtA%(Qi“ ~ 0;) da’
= é[%(ez +0:31)]% oar + é[%wiﬂ = 0] ca
= %(ei + 0iy1) — %(&H — 6;)

¢) What is this scheme usually called?

Answer: It is the Lax-Wendroff scheme.
iii) Consider the distribution of € at time ¢ = nAt to be piecewise quadratic
between the nodes ;.
a) Write down 6 as a function of x in the interval z; < x < z;4; by fitting
a quadratic function to the nodes 6;_1, 6; and 6,41 (i.e O(z;) = 6; at j =
i—1,4,i41).

Answer: Assume

($_5"z’+l> (I_xi+l)2
0 — 93— "3’ D T
(x) o+ 20 Ar + 3 A2
then
27
Oé—3ﬁ+z7 = 0i
3
_ Syo= 0,
a—p+ i
3
a+ [0+ 1= 01
or
3 1 1
o+ Z')/ = 591 + 591‘4—1
9 1 3
a + Z’}/ = 192‘_1 + 192‘4_1

26 = bi1—0;
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Solving for o, 3 and ~y:

1 2 1
= O O+ b,
g4 V1 G +6 +1
1 1
g = _§9i+§9i+1
1 6 3
= —<bi 1+ 20 + S0
« 3 1+8 +8 +1

b) Evaluate F}, 1 in equation (5) assuming a piecewise quadratic distribution.

Answer:
F o i 0 /)d /
i+% - At —cAt v .
1 x? 23 1Y
ol Ak et I
B B @5 N AN
- o\ Azx Ax? "
1 A 6 At  2RAP?
- Cl(_§+m7)0i‘1+(§_2m+ 68z )

3 At AA? ' ]

¢) In the limit of vanishing time-step, what scheme does the flux in (b)
approach?
Answer:

1 6 3
i+l = _gei—l + gei + §9i+1
which is the third-order form of the interpolated flux but is not third order
for the advection equation (see Problem Set 1).
iv) Again, consider the distribution of € at time ¢ = nAt to be piecewise
quadratic in the interval z; < x < x;,; and to take the form:
(z —z41) (x — Iz‘+l)2
2 +3 2 6

Az T AL (6)
a) Find o, # and v so that the spatial average over each finite volume (Ax)
around z; 1, x; and x; 1 equals 6;_1, 6; and 6, respectively. Note that this

O(z) = a+20
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is different to fitting the quadratic function at the nodes as you did in part
(iii).

Answer: Using ' = x — Tiy

! 2

O(z) = a+25Ax—x+37

Az?
r 22 23 A"
Azf ., — T Nl
20;41 _OzSL’ + ﬁA:c +7Ax2_ )
r 22 23 1°
Axl; = "+ —
i _Om +5Ax+7Ax2__Az
r 2 3] —Az
Arbioy = or + 0 Txa|
or
bin = a+B+y
0, = a—0+y
Qi_l = Oé—3ﬁ+7’)/
Solution:
1 2 1
= O — 20+ 20,
Y V1T G + gl
1 1
g = —§9i+§9i+1
1 ) 2
a = gl + 691' + 691‘+1
b) Evaluate F, 41 in equation (5) using the “finite volume” representation
from (a).
Answer:
F, _ Ly 0(z") da'
i+% B E —cAt <I> v
_ cAt N AAL?
- N\ Ar Az !
1 AN 5 cAt  2C2A#
= ——(1— ——=)b;_ - — 0,
C[ 61~ 62201 TG 7 3a T A
+(2 n cAt CQAtQ)e
6 2Az  6Az2’ T
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c) What is this scheme usually called?
Answer: It is the 3rd order Direct-Space-Time scheme from Q1.

Q3. Discrete conservation of variance The average and difference
operators are

i 1
0 = 50y +0y)
60 = G101

a) Prove the discrete product rule

Answer:
i 1 1
(51(9 U) - Ui+%§(‘91+1 —+ ‘9@> - UZ*%i(el + 91;1)
1 1
= EUH%(@H 0;) + §Ui—%(91 0i1) +0:(U; 1 — Uz—%)
= Us,0 + 05U

b) Prove the discrete product rule

5:(00) = 060+ b 6:0.

Answer:
0i(00) = O 101 —0; 10, 1
= %9i+1¢z+1 - % 0, 10 1+ 91+1¢Z+1 - % i 101
- ; s~ S0y + 2030y — 50 g0
2 Z+1¢Z_% + ;ez—lqsi—i-% - %QH%@—% - % i—%ﬁbw%
= iy + 0Bt — 0) F (01 6By~ Biy)

= 060+ 96,0
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c¢) A scalar advection equation and continuity equation are discretized

AzAyd0 + 5,0 UAY) + 6,0 VAz) = 0

6;(UAy) +6;(VAz) = 0.
Prove that the global integral of variance ([ [ 6 dz dy) is conserved given no
normal flow at domain boundaries. Assume perfect treatment of the time

derivative.
Answer:

00,@UAY) = 6T Uly) — TUAYSH

— 50 UAy) - UAy%éZH?Z

_ 5@ UAY) - %@(ﬁ'my) + %925i(UAy)

— 5@ - %W)UAy) + %mww)
Simalarly

05,0 VAr) = 5((@ — %ﬁ%vm) + %926j(VA:c)
Substituting in the the variance equation
%Awyaﬁ — _05,(FUAY) — 06,(F VAx)
— (@ - %W’)UA@/) 5@ - %eﬁj)vm)
—% (626:(UAy) + 0%6;(V Aa)

21— -2 1y
= (@~ Ty~ 5@~ STV )
— (SZFI ‘|‘ 5ij
Because the variance equation can be written in flux form and the involved

fluzes vanish on the domain boundaries, the domain integrated variance is
conserved.
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Q4. Burgers equation (Matlab) Burgers equation is
ou+ud,u = 0.

We will consider this equation in the re-entrant (periodic) domain 0 <z <1
(i.e. u(z =1,t) = u(x = 0,t) for all ¢).

i) Show that the continuous Burgers equation (globally) conserves [u? dx
where p is an integer.

Answer: Since
P = puPVo,u

and

Oyt = (p+ 1)uPO,u
then

(>-1) 1 1 1
uP™ (O 4+ udu) = —Ou? + ——0,uP
p p+1

thus

_ _ b +1] _

6t/updx—/6tupdx = 01 [up } =0

ii) a) Spatially discretize Burgers equation using centered second order differ-
ence but keeping a continuous time derivative. This is known as a differential-
difference equation.

Answer:

1
Ou; = —Ui—— (Ui-i-l — ui—l)

2Az

b) Show that although the differential-difference equation (ii.a) was not writ-
ten as the divergence of a flux, that this form does conserve < u > (volume
mean of u) and that it can be equivilently written in the flux form

where F 1 takes a particular form.
2
Answer:

1 ( ) 1 (Uiui-l-l Ui“i—l)
—Uj—— (Ui — Ujqy) = —— —
2Az ! ! Az \ 2 2
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SO

1
= Uit

2

F,

N

c¢) Show that the differential-difference equation (ii.a) does not conserve <
u? >. You should arrive at the result
Z lﬁtuz = Z Luiuzﬁrl(uzﬁrl — ;)
—2 2Azx

i

Answer:

= - Z UZUZL (Uip1 — ui—1)
- 2Ax

1 1
= T2 uigrgtin + D Uit i
= —E uuiu +§ Uiy 1U; Lu
- i 7 ZQASL’ i+1 - i+1 7,+12Ax 7

= Z Luiui+1(ui+1 — ;)
2Ax

i

d) Time discretize the differential-difference equation using the forward method.
Answer:

Use the energy method to derive the numerical stability criteria of the
for this discretization. The result takes the form

(1-C)r<1

x At n n :
where C} = 53=(uj; — uj’_;) is a proxy Courant number.
Answer:

At
n+1 n n ( n n )
Uu, = U, —U; —— |U; — U;_
i 7 7 9 2 T i+1 i—1
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()" = (o g (s — )
= (@) = 2 e (e — ) + )P (e (e i)

n n At n n ? n\2
L- Ar (ui—l—l - Ui—l) + (m(ui—f—l - ui—l)) (uy')

At n n At2 n n 2 n\2
= (1 AL (qu — ui_1> + m(uijq — Ui ) ) (ui')

AtAu  At2Au?

1
Az + 4Ax?

2
)

e) Write a Matlab script to solve the discrete Burger’s equation (ii.d) using
an initial condition of u(x,t = 0) = sin(27rx), Az = 1/50 and At = 1/1000.
Plot the solution, u(x), at the two times ¢ = 0.15 and ¢ = 0.2. Plot the
evolution of < u? > for the interval t = 0....0.2

iii) Burgers equation can be written in flux form as

1
@tu + iaxUQ =0.

and a corresponding flux-form differential-difference equation is

_! ((%)2 + (Ui+1)2>

Fi—F_1) with F, 1

ou=—(Fyy - F,

i

a) Show that the differential-difference equation (iii) does not conserve <
u? >. You should arrive at the result

1 1
Z 5@%2 = - Z Zuiui—i-l(ui—i-l — ;)

)

Answer:

Z%@m? = > wdu

= - Zuzﬁ <(Uz‘+1)2 - (“i—1)2>

- - Z4AI‘ i+1Wi+1 i Z4AI i—1Wi—1
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- i Z4Al‘ i+1Wi+1 i Z+14Al‘ 7 Wg

- - 4A.I‘ T Wi+1\Wi+1 7

b) Using the forward method, solve the discrete model (form iii) in Matlab
and plot the solution as before at ¢ = .15, ¢ = 0.2 and the evolution of
<u? >
c¢) Noting the difference in the answers to (ii.c) and (iii.a), combine the two
flux forms, (ii.b) and (iii), so that the corresponding differential-difference
equations conserves both < u > and < u? >.

Answer: We write the flux in the form

«Q (1 — Oé) n n
Fir= o Uillit1 R ((Uz )2+ (Ui+1)2>

and find a:

ensures that the source/sinks of variance from the two schemes cancel.
d) Implement this form (iii.c) in your Matlab script and plot the solution
and evolution of < u? > as before. Why is < u? > not constant?



