
����


Homework 2 

1. OpenMP Coding - not expected to be finished by tomorrow but start wirking 
on it so it will be of help for the homework problem set 3 on Wednesday! 

•	 Start working on a real (“easy” as in having an exact closed form so
lution) problem - consider the wave equation: 

∂2u 
= c2 ∂

2u	
(1)

∂t2 ∂x2


with initial conditions


u(x,0) = sin(2πx), 
∂u(x, t)


∂t
 t=0 
= −2πccos(2πx) (2)


on the unit interval [0,1] with periodic boundary conditions u(0, t) = 
u(1, t). Discretize un

i = u(iΔx,nΔt) and employ the 2nd order centered 
in space and time finite difference scheme: 

ui
n+1 − 2un

i + ui
n−1

2 u
n
i+1 − 2ui

n + un 

= c i−1 (3)
Δt2	 Δx2 

to solve equations 1,2 for an arbitrary c. c, the number of gridpoints 
M +1 (such that 0 ≤ i ≤ M in the x−direction) and number of timesteps 
N (such that 0 ≤ n ≤ N) ideally should be provided at runtime (by 
command line options, or by reading a file or through standard input). 
Keep in mind that un 

0 = uM
n for all n due to periodicity. The exact 

solution to compare against is u(x, t) = sin(2π(x − ct).) 
Write a parallel OpenMP version of your program that uses P proces
sors (left to be a runtime variable set via OMP NUM THREADS). 

–	 Try to also do the initialization in parallel. 
–	 You only need to update using the scheme gridpoints 0 to M-1 as 

gridpoint M is the same as gridpoint 0. 
–	 Take care to comply with the CFL condition c

Δ

Δ

x
t ≤ 1. 

–	 To conserve memory you should use an array of arrays (of dimen
sion 3) to store the 3 levels of u needed by the method. You may 
avoid excessive copying by manipulating the indices to the array, 
e.g. in Fortran, in each timestep: 

1 



����


DO i=1,M-1 
u(i,new) = dt*dt*c*c*(u(i+1,curr) 

$ - 2*u(i,curr) 
$ + u(i-1,curr))/(dx*dx) 
$ + 2*u(i,curr) 
$ - u(i,prev) 
ENDDO

swap = new

new = prev

prev = curr

curr = swap


Remember than in C/C++ this index variable should be first, not 
last to ensure that most memory accesses are unit-stride. 

–	 Every L timesteps (where L is defined at runtime) output the so
lution, the exact solution as well as the difference from the exact 
solution to disk (in separate files). Ideally you should also do this 
at the end of the run. 

–	 Add appropriate reduction directives to allow for the correct cal
culation of the maximum and the root-mean-square error to star
dard output every L timesteps. 

•	 Change of Boundary and Initial Conditions: Solve the wave equation 
1 with initial conditions 

∂u(x, t)
u(x,0) = sin(2πx), 

∂t

= 0 (4)


t=0 

on the unit interval [0,1] with Dirichlet boundary conditions 

u(0, t) = 0,u(1, t) = 0	 (5) 

(pined endpoints). Note the difference in initial conditions and more 
importantly in boundary conditions. Modify your existing parallel 
program that solves this using scheme (3). Use separate subroutines 
for initialization and error calculations etc. so that you can reuse as 
much of your code as possible (employ orphaned directives). 

–	 The exact solution to compare against is u(x, t)= sin(2πx)cos(2πct).) 
–	 You only need to update gridpoints 1 to M-1. 

2 



����


2. Food for thought 

•	 Modify (or at least think how you would modify) your program so that 
it solves a modified Equation (1) in the unit square [0,1]2. The twist 
is that instead of a constant c we have c(y) = 1 + 0.1sin(2πy) with 
the Dirichlet boundary conditions u(0,y, t) = 0,u(1,y, t) = 0 in the x-
direction and periodic boundary conditions u(x,0, t) = u(x,1, t) in the 
y-direction with initial conditions 

u(x,y,0) = sin(2πx)sin(2πy), 
∂u(x,y, t)


∂t

= 0 (6)


t=0 

and an exact solution of u(x, t) = sin(2πx)sin(2πy)cos(2πc(y)t). The 
number of gridpoints in the x- and y-directions are supplied at runtime. 

–	 Is there a preferred loop order to represent the x− and y− direc
tions? 

–	 Can we use nested parallel loops to parallelize the solution in both 
the x-loop and y-loop level? 

3. Vital MPI preliminaries 

•	 For those of you that did not do it already, please becoming familiar 
with the MPI compilation and runtime environment: 

•	 Write, compile and run the “Hello World” program described in class. 

•	 Download simple-mpi.tar.gz from the Stellar website (alternatively 
http://web.mit.edu/13.715/www/simple-mpi.tar.gz), compile and run 
the examples. Look up MPI Get processor name() and MPI Get version() 
routines in the man pages. Read the code, and produce output for 2 or 
more processors. 

4. Write your own ping-pong program. Employ MPI Send()/MPI Recv() and 
MPI Wtime() (look at man page) to measure roundtrip time RT T (s) and 
bandwidth BWD(s) = 2RT T 

s 
(s) as a function of message length s. Produce 

graphs of 0.5RT T (s) and BWD(s) against s. Report the following 3 values: 

Define zero-byte latency as 0.5lims 0 RT T (s)•	 →

Define asymptotic bandwidth as lims ∞ BWD(s)•	 →

•	 Define maximum bandwidth as maxs∈(0,∞) BWD(s). In practice ∞ is 
in the range of a few MBs, depending on the speed of the interconnect. 

3 

http://web.mit.edu/13.715/www/simple-mpi.tar.gz)


5. Bonus for the Eager Beaver (EB): 

•	 Calculate the three aforementioned quantities for the three combina
tions of: MPI Send() vs MPI Ssend() vs MPI Bsend() coupled with 
MPI Recv(). Do you need to do anything to guarantee correctness 
with MPI Bsend()? 

•	 Since your nodes are dual processor nodes: Try two processors on 
the same machine vs two processors on different machines. (Can you 
force the MPI runtime to do this? Read the manpages for mpirun 
etc. for OpenMPI very carefully.) Try with the other three variants of 
MPI Send() as well. 

•	 Try timing a streaming ping, where process A continuously streams 
data to process B. How to best time this? 

•	 What problems, if any, do you encounter? What are your findings? 

4 



MIT OpenCourseWare
http://ocw.mit.edu 

12.950 Parallel Programming for Multicore Machines Using OpenMP and MPI 
IAP 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu



