
Chapter 2 

Decision Theory 

2.1 The basic theory of choice 

We consider a set  of alternatives. Alternatives are mutually exclusive in the sense 

that one cannot choose two distinct alternatives at the same time. We also take the set 

of feasible alternatives exhaustive so that a player’s choices is always well-defined.1 

We are interested in a player’s preferences on . Such preferences are modeled 

through a relation º on , which is simply a subset of  × . A  relation  º is said to 

be complete if and only if, given any   ∈ , either   º  or  º . A  relation  º is 

said to be transitive if and only if, given any    ∈ , 

[ º  and  º ] ⇒  º . 

A relation  is  a  preference relation if and only if it is complete and transitive. Given any 

preference relation º, we can  define strict preference Â by 

 Â  ⇐⇒ 6[ º  and  º ] 

and the indifference ∼ by 

 ∼  ⇐⇒ [ º  and  º ] 

1This is a matter of modeling. For instance, if we have options Coffee and Tea, we define alternatives 

as  = Coffee but no Tea,  = Tea but no Coffee,  = Coffee and Tea, and   = no Coffee and no 

Tea. 
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A preference  relation  can  be  represented by a utility function  :  → R in the 

following sense: 

 º  ⇐⇒ () ≥ () ∀   ∈  

This statement can be spelled out as follows. First, if () ≥ (), then the player finds 

alternative  as good as alternative . Second, and conversely, if the player finds  at 

least as good as , then   () must be at least as high as  (). In other words, the 

player acts as if he is trying to maximize the value of  (·). 
The following theorem states further that a relation needs to be a preference relation 

in order to be represented by a utility function. 

Theorem 2.1 Let  be finite. A relation can be presented by a utility function if and 

only if it is complete and transitive. Moreover, if  :  → R represents º, and  if  

 : R → R is a strictly increasing function, then  ◦  also represents º. 

By the last statement, such utility functions are called ordinal, i.e., only the order 

information is relevant. 

In order to use this ordinal theory of choice, we should know the player’s preferences 

on the alternatives. As we have seen in the previous lecture, in game theory, a player 

chooses between his strategies, and his preferences on his strategies depend on the strate-

gies played by the other players. Typically, a player does not know which strategies the 

other players play. Therefore, we need a theory of decision-making under uncertainty. 

2.2 Decision-making under uncertainty 

Consider a finite set  of prizes, and  let   be the set of all probability distributions P 
 :  → [0 1] on , where  ∈ () = 1. We call these probability distributions 

lotteries. A lottery can be depicted by a tree. For example, in Figure 2.1, Lottery 1 

depicts a situation in which the player gets $10 with probability 1/2 (e.g. if a coin toss 

results in Head) and $0 with probability 1/2 (e.g. if the coin toss results in Tail). 

In the above situation, the probabilities are given, as in a casino, where the probabili-

ties are generated by a machine. In most real-world situations, however, the probabilities 

are not given to decision makers, who may have an understanding of whether a given 

event is more likely than another given event. For example, in a game, a player is not 
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Lottery 1 

Figure 2.1: 

given a probability distribution regarding the other players’ strategies. Fortunately, it 

has been shown by Savage (1954) under certain conditions that a player’s beliefs can be 

represented by a (unique) probability distribution. Using these probabilities, one can 

represent the decision makers’ acts by lotteries. 

We would like to have a theory that constructs a player’s preferences on the lotteries 

from his preferences on the prizes. There are many of them. The most well-known–and 

the most canonical and the most useful–one is the theory of expected utility maximiza-

tion by Von Neumann and Morgenstern. A preference relation º on  is said to be 

represented by a von Neumann-Morgenstern utility function  :  → R if and only if X X 
 º  ⇐⇒ () ≡ ()() ≥ ()() ≡ () (2.1) 

∈ ∈ 

for each   ∈  . This statement has two crucial parts: 

1.	  :  → R represents º in the ordinal sense. That is, if  () ≥  (), then the 

player finds lottery  as good as lottery . And conversely, if the player finds  at 

least as good as , then   () must be at least as high as  (). 

2. The function  takes a particular form: for each lottery ,  () is the expected P 
value of  under . That  is,  () ≡ ∈ ()(). In other words, the player acts 

as if he wants to maximize the expected value of . For instance, the expected 

1/2 

1/2 

10 

0 

utility of Lottery 1 for the player is ((Lottery 1)) = 1 
2
(10) +
1 

2
(0).2 

In the sequel, I will describe the necessary and sufficient conditions for a represen-

2If  were a continuum, like R, we would compute the expected utility of  by 

tation as in (2.1). The first condition states that the relation is indeed a preference 

relation: R 
()().
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Figure 2.2: Two lotteries 

Axiom 2.1 º is complete and transitive. 

This is necessary by Theorem 2.1, for  represents º in ordinal sense. The second 

condition is called independence axiom, stating that a player’s preference between two 

lotteries  and  does not change if we toss a coin and give him a fixed lottery  if “tail” 

comes up. 

Axiom 2.2 For any    ∈  , and  any   ∈ (0 1],  + (1− ) Â  + (1− ) ⇐⇒ 

 Â . 

Let  and  be the lotteries depicted in Figure 2.2. Then, the lotteries  +(1− ) 

and  + (1  − ) can be depicted as in Figure 2.3, where we toss a coin between a 

fixed lottery  and our lotteries  and . Axiom 2.2 stipulates that the player would not 

change his mind after the coin toss. Therefore, the independence axiom can be taken as 

an axiom of “dynamic consistency” in this sense. 

The third condition is purely technical, and called continuity axiom. It states that 

there are no “infinitely good” or “infinitely bad” prizes. 

Axiom 2.3 For any    ∈  with  Â , there  exist    ∈ (0 1) such that  + (1− 

) Â  and  Â  + (1− ). 

Axioms 2.1 and 2.2 imply that, given any    ∈  and any  ∈ [0 1], 

if  ∼ , then   + (1− )  ∼  + (1− ) (2.2) 

This has two implications: 

1. The indifference curves on the lotteries are straight lines. 
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Figure 2.3: Two compound lotteries 
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Figure 2.4: Indifference curves on the space of lotteries 
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2. The indifference curves, which are straight lines, are parallel to each other. 

To illustrate these facts, consider three prizes 0 1, and  2, where  2 Â 1 Â 0. 

A lottery   can be depicted on a plane by taking  (1) as the first coordinate (on the 

horizontal axis), and  (2) as the second coordinate (on the vertical axis). The remaining 

probability  (0) is 1−  (1)−  (2). [See Figure 2.4 for the illustration.] Given any 

two lotteries  and , the convex combinations  +(1− )  with  ∈ [0 1] form the line 

segment connecting  to . Now,  taking   = , we can deduce from (2.2) that, if  ∼ , 

then  + (1− )  ∼  + (1 − ) =  for each  ∈ [0 1]. That is, the line segment 

connecting  to  is an indifference curve. Moreover, if the lines  and 0 are parallel, then 

 = |0|  ||, where  || and |0| are the distances of  and 0 to the origin, respectively. 

Hence, taking  = , we compute that 0 =  + (1− ) 0 and 0 =  + (1− ) 0 , 

where 0 is the lottery at the origin and gives 0 with probability 1. Therefore, by (2.2), 

if  is an indifference curve, 0 is also an indifference curve, showing that the indifference 

curves are parallel. 

Line  can be defined by equation 1 (1)+2 (2) =  for some 1 2   ∈ R. Since  

0 is parallel to , then  0 can also be defined by equation 1 (1)+2 (2) = 0 for some 

0. Since the indifference curves are defined by equality 1 (1)+2 (2) =  for various 

values of , the preferences are represented by 

 () =  0 + 1 (1) + 2 (2) 

≡ (0)(0) + (1) (1) + (2)(2) 

where 

 (0) = 0 

(1) =  1 

(2) =  2 

giving the desired representation. 

This is true in general, as stated in the next theorem: 

Theorem 2.2 A relation º on  can be represented by a von Neumann-Morgenstern 

utility function  :  →  as in (2.1) if and only if º satisfies Axioms 2.1-2.3. Moreover, 

 and ̃ represent the same preference relation if and only if ̃ =  +  for some    0 

and  ∈ R. 
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By the last statement in our theorem, this representation is “unique up to affine 

transformations”. That is, a decision maker’s preferences do not change when we change 

his von Neumann-Morgenstern (VNM) utility function by multiplying it with a positive 

number, or adding a constant to it; but they do change when we transform it through a 

non-linear transformation. In this sense, this representation is “cardinal”. Recall that, 

in ordinal representation, the preferences wouldn’t change even if the transformation 
√ 

were non-linear, so long as it was increasing. For instance, under certainty,  =  

and  would represent the same preference relation, while (when there is uncertainty) 
√ 

the VNM utility function  =  represents a very different set of preferences on the 

lotteries than those are represented by . 

2.3 Modeling Strategic Situations 

In a game, when a player chooses his strategy, in principle, he does not know what the 

other players play. That is, he faces uncertainty about the other players’ strategies. 

Hence, in order to define the player’s preferences, one needs to define his preference 

under such uncertainty. In general, this makes modeling a difficult task. Fortunately, 

using the utility representation above, one can easily describe these preferences in a 

compact way. 

Consider two players Alice and Bob with strategy sets  and . If  Alice  plays  

 and Bob plays , then  the  outcome  is  ( ). Hence,  it  suffices to take the set of 

outcomes  =  ×  = {( ) | ∈   ∈ } as the set of prizes. Consider 
Alice. When she chooses her strategy, she has a belief about the strategies of Bob, 

represented by a probability distribution  on , where   () is the probability 

that Bob plays , for any strategy . Given such a belief, each strategy  induces a 

lottery, which yields the outcome ( ) with probability  (). Therefore, we can 

consider each of her strategies as a lottery. 

Example 2.1 Let  = {} and  = {}. Then, the outcome set is  = 

{ }. Suppose that Alice assigns probability  () = 13 to  and 

 () = 23 to . Then, under this belief, her strategies  and  yield the following 
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lotteries: 
TLTLTLTL 

001/31/3 

TRTRTRTR 00 

2/32/3 
BB1/1/ 1/333 1/3TT1/1/33 

BLBLBL00 BL 

2/32/3 

00 

BLBLBLBL 

On the other hand, if she assigns probability  () = 12 to  and  () = 12 to , 

then her strategies  and  yield the following lotteries: 

TLTLTLTL 

001/21/2 

TRTRTRTR 00 

1/1/22 
BB 1/1/21/2 1/22TT1/1/22 

BLBLBL00 BL 

1/21/2 

00 

BLBLBLBL 

The objective of a game theoretical analysis is to understand what players believe 

about the other players’ strategies and what they would play. In other words, the players’ 

beliefs,  and , are determined at the end of the analysis, and we do not know them 

when we model the situation. Hence, in order to describe a player’s preferences, we need 

to describe his preferences among all the lotteries as above for every possible belief he 

may hold. In the example above, we need to describe how Alice compares the lotteries 

TLTLTLTL 

00pp 

TRTRTRTR 00 

1-1-pp 
BB ppp pTTpp 

BLBLBL0 BL0 

1-1-pp 

00 

BLBL BLBL 
(2.3) 
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for every  ∈ [0 1]. That is clearly a challenging task. 

Fortunately, under Axioms 2.1-2.3, which we will assume throughout the course, we 

can describe the preferences of Alice by a function 

 :  ×  → R 

Similarly, we can describe the preferences of Bob by a function 

 :  ×  → R 

In the example above, all we need to do is to find four numbers for each player. The 

preferences of Alice is described by  (),  (),  (), and   (). 

Example 2.2 In the previous example, assume that regarding the lotteries in (2.3), the 

preference relation of Alice is such that 

 Â  if    14 (2.4) 
 

 ∼  if  = 14 
 

 Â  if    14 
 

and she is indifferent between the sure outcomes () and (). Under  Axioms  

2.1-2.3, we can represent her preferences by 

 () = 3  

 () =  −1 
 () = 0  

 () = 0 

The derivation is as follows. By using the fact that she is indifferent between () and 

(), we  reckon  that   () =  (). By  the  second  part  of  Theorem  2.2,  we  

can set  () = 0 (or any other number you like)! Moreover, in (2.3), the lottery  

yields 

 () =  ( ) + (1− ) ()  

and the lottery  yields 

 () =  () + (1− ) () = 0 
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Hence, the condition (2.4) can be rewritten as 

 () + (1− ) ()  0 if    14 

 () + (1− ) () = 0  if  = 14 

 () + (1− ) ()  0 if    14 

That is, 
1 3 
 ( ) +   () = 0
4 4 

and 

 ( )   ()  

In other words, all we need to do is to find numbers  ()  0 and  ()  0 

with  () =  −3 (), as in our solution. (Why would any such two numbers 

yield the same preference relation?) 

2.4 Attitudes Towards Risk 

Here, we will relate the attitudes of an individual towards risk to the properties of his 

von-Neumann-Morgenstern utility function. Towards this end, consider the lotteries 

with monetary prizes and consider a decision maker with utility function  : R → R. 

A lottery is said to be a fair gamble if its expected value is 0. For instance, consider 

a lottery that gives  with probability  and  with probability 1− ;  denote this lottery  

by  ( ; ). Such a lottery is a fair gamble if and only if  + (1− ) = 0 

A decision maker is said to be risk-neutral if and only if he is indifferent between 

accepting and rejecting all fair gambles. Hence, a decision maker with utility function 

 is risk-neutral if and only if X X 
 ()  () =  (0) whenever  () = 0 

This is true if and only if the utility function  is linear, i.e.,   () =   +  for some 

real numbers  and . Therefore, an agent is risk-neutral if and only if he has a linear 

Von-Neumann-Morgenstern utility function. 

A decision maker is strictly risk-averse if and only if he rejects all fair gambles, 

except for the gamble that gives 0 with probability 1. That is, X ³X ´ 
 ()  ()   (0) =   ()  
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Here, the inequality states that he rejects the lottery ,  and  the equality is by the  fact  

that the lottery is a fair gamble. As in the case of risk neutrality, it suffices to consider 

the binary lotteries  ( ; ), in which case the above inequality reduces to 

() + (1− )()  ( + (1− )) 

This is a familiar inequality from calculus: a function  is said to be strictly concave if 

and only if 

( + (1− ))  () + (1− )() 

for all  ∈ (0 1). Therefore, strict risk-aversion is equivalent to having a strictly concave 

utility function. A decision maker is said to be risk-averse iff he has a concave utility 

function, i.e., ( + (1 − )) ≥ () + (1 − )() for each , , and  . Similarly, 

a decision maker is said to be (strictly) risk seeking iff he has a (strictly) convex utility 

function. 

Consider Figure 2.5. A risk averse decision maker’s expected utility is  () =  

 (1) + (1− ) (2) if he has a gamble that gives 1 with probability  and 2 

with probability 1−. On the other hand, if he had the expected value 1 +(1− )2 

for sure, his expected utility would be  (1 + (1− )2). Hence, the cord AB is the 

utility difference that this risk-averse agent would lose by taking the gamble instead of 

its expected value. Likewise, the cord BC is the maximum amount that he is willing 

to pay in order to avoid taking the gamble instead of its expected value. For example, 

suppose that 2 is his wealth level; 2 − 1 is the value of his house, and  is the 

probability that the house burns down. In the absence of fire insurance, the expected 

utility of this individual is (gamble), which is lower than the utility of the expected 

value of the gamble. 

2.4.1 Risk sharing 
√ 

Consider an agent with utility function  :  7 . He has a (risky) asset that gives $100 → 

with probability 1/2 and gives $0 with probability 1/2. The expected utility of the asset √ √ 
for the agent is 0 = 1

2 0 +
1
2 100 = 5. Consider also another agent who is identical 

to this one, in the sense that he has the same utility function and an asset that pays 

$100 with probability 1/2 and gives $0 with probability 1/2. Assume throughout that 

what an asset pays is statistically independent from what the other asset pays. Imagine 
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u(pW1+(1- p)W2) 

EU(Gamble) 

u 

B 

C 

A 

W1 pW1+(1-p)W2 W2 

Figure 2.5: 
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that the two agents form a mutual fund by pooling their assets, each agent owning half 

of the mutual fund. This mutual fund gives $200 the probability 1/4 (when both assets 

yield high dividends), $100 with probability 1/2 (when only one on the assets gives high 

dividend), and gives $0 with probability 1/4 (when both assets yield low dividends). 

Thus, each agent’s share in the mutual fund yields $100 with probability 1/4, $50 with 

probability 1/2, and $0 with probability 1/4. Therefore, his expected utility from the √ √ √ 
1 1 1share in this mutual fund is  =
 0 = 60355. 
  This is clearly  100 +
 50 +

4 2 4 

larger than his expected utility from his own asset which yields only 5. Therefore, the 

above agents gain from sharing the risk in their assets. 

2.4.2 Insurance 

Imagine a world where in addition to one of the agents above (with utility function 
√ 

 :  7  and a risky asset that gives $100 with probability 1/2 and gives $0 with → 

probability 1/2), we have a risk-neutral agent with lots of money. We call this new agent 

the insurance company. The insurance company can insure the agent’s asset, by giving 

him $100 if his asset happens to yield $0. How much premium,  , the agent would be 

willing to pay to get this insurance? [A premium is an amount that is to be paid to 

insurance company regardless of the outcome.] 

If the risk-averse agent pays premium  and buys the insurance, his wealth will be 

$100 −  for sure. If he does not, then his wealth will be $100 with probability 1/2 and 

$0 with probability 1/2. Therefore, he is willing to pay  in order to get the insurance 

iff 
1 1 

 (100 −  ) ≥  (0) +  (100) 
2 2 

i.e., iff √ √ √1 1 
100 −  ≥ 0 +  100 

2 2 
The above inequality is equivalent to 

 ≤ 100 − 25 = 75 

That is, he is willing to pay 75 dollars premium for an insurance. On the other hand, if 

the insurance company sells the insurance for premium  , it  gets   for sure and pays 

$100 with probability 1/2. Therefore it is willing to take the deal iff 

1 
 ≥ 100 = 50 

2 
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Therefore, both parties would gain, if the insurance company insures the asset for a 

premium  ∈ (50 75), a deal both parties are willing to accept. 

Exercise 2.1 Now consider the case that we have two identical risk-averse agents as 

above, and the insurance company. Insurance company is to charge the same premium 

 for each agent, and the risk-averse agents have an option of forming a mutual fund. 

What is the range of premiums that are acceptable to all parties? 

2.5 Exercises with Solution 

1. [Homework 1, 2006] In which of the following pairs of games the players’ preferences 

over lotteries are the same? 

(a) 

      

 2 −2 1 1 −3 7 
1 10 0 4 0 4 

−2 1 1 7 −1 −5 

 

  

  

12 −1 5 0 −3 2 
5 3 3 1 3 1 

−1 0 5 2 1 −2 

(b) 

      

  

  

  

1 2 7 0 4 −1 
6 1 2 2 8 4 

3 −1 9 2 5 0 

1 5 7 1 4 −1 
6 3 2 4 8 8 

3 −1 9 5 5 1 

Solution: Recall from Theorem 2.2 that two utility functions represent the same 

preferences over lotteries if and only if one is an affine transformation of the other. 

That  is,  we must have   =  +  for some  and  where  and  are the 

utility functions on the left and right, respectively, for each player . In  Part  1,  the  

preferences of player 1 are different in two games. To see this, note that 1 ( ) =  

0 and 1 ( ) = 3. Hence, we must have  = 3. Moreover,  1 ( ) = 1 and 

1 ( ) = 5. Hence, we must have  = 2. But  then,  1 ( ) +  = 7  6= 

12 = 1 ( ), showing that it is impossible to have an affine transformation. 

Similarly, one can check that the preferences of Player 2 are different in Part 2. 
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Now, comparisons of payoffs for  ( ) and ( ) yield that  = 2 and  = 1, but  

then the payoffs for  ( ) do not match under the resulting transformation. 

2. [Homework 1, 2011] Alice and Bob want to meet in one of three places, namely 

Aquarium (denoted by ), Boston Commons (denoted by ) and a Celtics game 

(denoted by ). Each of them has strategies   .  If  they both play the  same  

strategy, then they meet at the corresponding place, and they end up at different 

places if their strategies do not match. You are asked to find a pair of utility 

functions to represent their preferences, assuming that they are expected utility 

maximizers. 

Alice’s preferences: She prefers any meeting to not meeting, and she is indiffer-

ence towards where they end up if they do not meet. She is indifferent between a 

situation in which she will meet Bob at , or  , or  , each with probability 1/3, 

and a situation in which she meets Bob at  with probability 1/2 and does not 

meet Bob with probability 1/2. If she believes that Bob goes to Boston Commons 

with probability  and to the Celtics game with probability 1 − , she  weakly  

prefers to go to Boston Commons if and only if  ≥ 13. 

Bob’s preferences: If he goes to the Celtics game, he is indifferent where Alice 

goes. If he goes to Aquarium or Boston commons, then he prefers any meeting to 

not meeting, and he is indifferent towards where they end up in the case they do 

not meet. He is indifferent between playing , , and   if he believes that Alice 

may choose any of her strategies with equal probabilities. 

(a) Assuming that they are expected utility maximizers,	 find a pair of utility 

functions  : {  }2 → R and  : {  }2 → R that represent the 

preferences of Alice and Bob on the lotteries over {  }2 
. 

Solution: Alice’s utility function is determined as follows. Since she is indif-

ferent between any (  ) with  6=  , by Theorem 2.2, one can normalize 

her payoff for any such strategy profile to  (  ) = 0. Moreover, since 

she prefers meeting to not meeting,  ( )  0 for all  ∈ {  }. 
By Theorem 2.2, one can also set  ( ) = 1  by a normalization. The 

indifference condition in the question can then be written as 

1 1 1 1 
 ( ) +   ( ) +   ( ) =   ( )  
3 3 3 2 
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The last preference in the question also leads to 

1 2 
 ( ) =   ( )  
3 3 

Form  the last equality,   ( ) = 2,  and  from  the previous displayed  equal-

ity,  ( ) = 6. 

Bob’s utility function can be obtained similarly, by setting  (  ) = 0  

for any distinct   when  ∈ { }. The  first and  the last indifference 

conditions also imply that  ( )  0, and hence one can set  ( ) = 1  

for all  ∈ {  } by the first indifference. The last indifference then 

implies that 
1 1 
 ( ) =   ( ) =  ( ) = 1 
3 3
 

yielding  ( ) =  ( ) = 3.
 

(b) Find another representation of the same preferences. 

Solution: By Theorem 2.2, we can find another pair of utility functions by 

doubling all payoffs. 

(c) Find a pair of utility functions that yield the same preference as  and  

does among the sure outcomes but do not represent the preferences above. 

Solution: Take  ( ) = 60 and  ( ) =  ( ) = 30 while keep-

ing all other payoffs as before. By Theorem 2.1, the preferences among sure 

outcomes do not change, but the preferences among some lotteries change by 

Theorem 2.2. 

3. [Homework 1, 2011] In this question you are asked to price a simplified version of 

mortgage-backed securities. A banker lends money to  homeowners, where each 

homeowner signs a mortgage contract. According to the mortgage contract, the 

homeowner is to pay the lender 1 million dollar, but he may go bankrupt with 

probability , in which case there will be no payment. There is also an investor 

who can buy a contract in which case he would receive the payment from the 

homeowner who has signed the contract. The utility function  of the investor is 

given by  () = − exp (−), where   is the net change in his wealth. 

(a) How much is the investor willing to pay for a mortgage contract? 
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Solution: He pays a price  if and only if  [ ( −  )] ≥  (0), i.e., 

− (1 − ) exp  (− (1 −  )) −  exp (− (0 −  )) ≥ −1 

That is, 
1 

 ≤  ∗ ≡ −  ln ( + (1  − ) exp  (−))  

 

where  ∗ is the maximum willing to pay.
 

(b) Now suppose that the banker can form  "mortgage-backed securities" by 

pooling all the mortgage contracts and dividing them equally. A mortgage 

backed security yields 1 of the total payments by the  homeowners, i.e., if  

homeowners go bankrupt, a security pays ( − )  millions dollar. Assume 

that homeowners’ bankruptcy are stochastically independent from each other. 

How much is the investor willing to pay for a mortgage-backed security? 

Assuming that  is large find an approximate value for the price he is willing 

to pay. [Hint: for large , approximately, the average payment is normally 

distributed with mean  1 −  (million dollars) and variance  (1 − ) . If   

is normally distributed with mean  and variance 2, the expected value of ¡ ¡ ¢¢ 
exp (−) is exp −  −

2
1 2 .] How much more can the banker raise by 

creating mortgage-backed securities? (Use the approximate values for large 

.) 

Solution: Writing  for the number of  combinations out of , the prob-

ability that there are  bankruptcies is  (1 − )−. If  he  pays   for 

a mortgage-backed security, his net revenue in the case of  bankruptcies is 

1 −  −. Hence, his expected payoff is 
X 

− exp (− (1 −  −))  (1 − )−  
=0 

He is willing to pay  if the above amount is at least −1, the  payoff from 0. 

Therefore, he is willing to pay at most Ã ! 
X 

 ∗ = 1  − 
1 
ln exp ()  (1 − )−  
 

=0 

For large , 

1  (1 − )
 ∗ ∼= 1 − ln (exp ( ( +  (1 − )  (2)))) = 1 −  −   

 2 

http:��)���.If
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Note that he is asking a discount of  (1 − ) 2 from the expected payoff 

against the risk, and behaves approximately risk neutral for large . The  

banker gets an extra revenue of ∗ −  ∗ from creating mortgage-backed se-

curities. (Check that ∗ −  ∗  0.) 

(c) Answer part (b) by assuming instead that the homeowners’ bankruptcy are 

perfectly correlated: with probability  all homeowners go bankrupt and with 

probability 1 −  none of them go bankrupt. Briefly compare your answers 

for parts (b) and (c). 

Solution: With perfect correlation, a mortgage-backed security is equivalent 

to one contract, and hence he is willing to pay at most  ∗ . In general, when 

there is a positive correlation between the bankruptcies of different homeown-

ers (e.g. due to macroeconomic conditions), the value of mortgage backed 

securities will be less than what it would have been under independence. 

Therefore, mortgage back securities that are priced under the erroneous as-

sumption of independence would be over-priced. 

2.6 Exercises 

1. [Homework 1, 2000] Consider a decision maker with Von Neumann and Morgen-

stren utility function  with  () = ( − 1)2 
. Check whether the following VNM 

utility functions can represent this decision maker’s preferences. (Provide the de-

tails.) 

(a) ∗ :  →7  − 1; 

(b) ∗∗ :  7→ ( − 1)4 
; 

(c) ̂ :  7→ − ( − 1)2 
; 

(d) ̃ :  7→ 2 ( − 1)2 − 1 

2. [Homework 1, 2004] Which of the following pairs of games are strategically equiv-

alent, i.e., can be taken as two different representations of the same decision prob-

lem? 
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(a) 

L R L R 

T T 

B B 

2,2 4,0 

3,3 1,0 

-6,4 0,0 

-3,6 -9,0 

(b) 

L R L R 

T T 

B B 

2,2 4,0 

3,3 1,0 

4,4 16,0 

9,9 1,0 

(c) 

L R L R 

T T 

B B 

2,2 4,0 

3,3 1,0 

4,2 2,0 

3,3 1,0 

3. [Homework 1, 2001] We have two dates: 0 and 1.	 We have a security that pays a 

single dividend, at date 1. The dividend may be either $100, or $50, or $0, each 

with probability 1/3. Finally, we have a risk-neutral agent with a lot of money. 

(The agent will learn the amount of the dividend at the beginning of date 1.) 

(a) An agent is asked to decide whether to buy the security or not at date 0. If he 

decides to buy, he needs to pay for the security only at date 1 (not immediately 

at date 0). What is the highest price  at which the risk-neutral agent is 

willing to buy this security? 

(b) Now consider an “option” that gives the holder the right (but not obligation) 

to buy this security at a strike price  at date 1 – after the agent learns 

the amount of the dividend. If the agent buys this option, what would be the 

agent’s utility as a function of the amount of the dividend? 

(c) An agent is asked to decide whether to buy this option or not at date 0.	 If he 

decides to buy, he needs to pay for the option only at date 1 (not immediately 

at date 0). What is the highest price  at which the risk-neutral agent is 

willing to buy this option? 

4. [Homework 1, 2001] Take  = R, the set of real numbers, as the set of alternatives. 

Define a relation º on  by
 

 º  ⇐⇒  ≥  − 12 for all   ∈ .
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(a)	 Is º a preference relation? (Provide a proof.) 

(b)	 Define the relations Â and ∼ by 

 Â  ⇐⇒ [ º  and  º6 ] 

and
 

 ∼  ⇐⇒ [ º  and  º ] 
 

respectively. Is Â transitive? Is ∼ transitive? Prove your claims. 

(c)	 Would º be a preference relation if we had  = N, where  N = {0 1 2   } is 
the set of all natural numbers? 
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