14.123 Microeconomics III—Problem Set 1

Muhamet Yildiz

Instructions. You are encouraged to work in groups, but everybody must write their own solutions. Each question is 25 points. Good Luck!

1. Consider a monopolist with n buyers. At each date t = 1, ..., n, simultaneously, monopolist chooses quality $q \in \{H, L\}$ and the buyer t decides whether to buy (choosing $b \in \{B, N\}$). The stage payoffs are as in the following table

	B	N
Η	2 - c, 1	-c, 0
L	2, -1	0, 0

where $c \in \{-1, 1\}$ is the cost of producing a high quality product, privately known by the monopolist. The ex-ante probability of c = 1 is $1 - \varepsilon$ for some $\varepsilon \in (0, 1/2)$; the cost is the same at all dates, and all the previous moves are publicly observable. Find a sequential equilibrium. For any n, find the largest ε under which monoplist chooses high quality in the first date regardless of his cost.

- 2. Let P be the set of lotteries over $\{a, b, c\} \times \{L, M, R\}$. In which of the following pairs of games the players' preferences over P are the same?
 - (a)

(b)

	\mathbf{L}	Μ	R		\mathbf{L}	Μ	R
a	2,-2	$1,\!1$	-3,7] a	6,-1	4,0	-4,2
b	1,10	0,4	0,4	b	4,3	2,1	2,1
с	-2,1	1,7	-1,-5	c	-2,0	4,2	0,-2
-							<u>. </u>
	Ŧ	7.6	Б		Ŧ	2.6	D
	\mathbf{L}	М	R		\mathbf{L}	М	R
a	1,2	7,0	4,-1	a	1,5	7,1	4,-1
b	61	2.2	84	b	6.3	2.4	8.8

5,0

c 3,-1 9,5

5,1

3. Consider the set of lotteries (p_x, p_y, p_z) on the set of outcomes $\{x, y, z\}$ where p_x, p_y , and p_z are the probabilities of x, y, and z, respectively.

c 3,-1 9,2

- (a) For each (partial) preference below, determine whether it is consistent with expected utility maximization. (If yes, find a utility function; if so, show that it cannot come from an expected utility maximizer.)
 - 1. $(1/4, 1/4, 1/2) \sim (3/4, 0, 1/4) \succ (1/4, 1/2, 1/4) \succ (3/4, 1/4, 0)$ 2. $(1/4, 1/4, 1/2) \succ (3/4, 0, 1/4) \succ (5/6, 1/6, 0) \succ (1/2, 1/3, 1/6)$
- (b) Find a complete and transitive preference relation on the above lotteries that satisfies the independence axiom but cannot have an expected utility representation.

- (c) Find a complete, continuous, and transitive preference on the above lotteries such that
 - whenever there is an indifference between (p_x, p_y, p_z) and (q_x, q_y, q_z) , there is an indifference between (p_x, p_y, p_z) and $\alpha (p_x, p_y, p_z) + (1 - \alpha) (q_x, q_y, q_z)$ for every $\alpha \in [0, 1]$, and yet
 - the preference relation does not have an expected utility representation.
- 4. Exercise 9 in Chapter 5 of the Lecture Notes.

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.