14.123 Microeconomics III—Problem Set 1

Muhamet Yildiz

Instructions. You are encouraged to work in groups, but everybody must write their own solutions. Each question is 33 points. Good Luck!

- 1. Exercise 2.1 in lecture notes.
- 2. Consider the set of lotteries (p_x, p_y, p_z) on the set of outcomes $\{x, y, z\}$ where p_x, p_y , and p_z are the probabilities of x, y, and z, respectively.
 - (a) For each (partial) preference below, determine whether it is consistent with expected utility maximization. (If yes, find a utility function; if so, show that it cannot come from an expected utility maximizer.)

1.
$$(0,1,0) \succ (1/8,6/8,1/8)$$
 and $(7/8,0,1/8) \succ (6/8,1/8,1/8)$
2. $(1/4,1/4,1/2) \succ (3/4,0,1/4) \succ (5/6,1/6,0) \succ (1/2,1/3,1/6)$

- (b) For each family of indifference curves below, determine whether it is consistent with expected utility maximization. (If yes, find a utility function; if so, show that it cannot come from an expected utility maximizer.)
 - 1. $p_y = c 2p_x$ (where c varies) 2. $p_y = c (p_x + 1)$ (where c varies) 3. $p_y = c - 2\sqrt{p_x}$ (where c varies)
- (c) Find a complete and transitive preference relation on the above lotteries that satisfies the independence axiom but cannot have an expected utility representation.
- 3. Under the assumptions P1-P5, prove or disprove the following statements.
 - (a) If $A_1 \succeq B_1$, $A_2 \succeq B_2$, and $A_1 \cap A_2 = \emptyset$, then $A_1 \cup A_2 \succeq B_1 \cup B_2$.
 - (b) For any given event D, define " \succeq given D" by $A \succeq B$ given D iff $A \cap D \succeq B \cap D$. The relation \succeq given D is a qualitative probability.
 - (c) For any two partitions (A_1, \ldots, A_n) and (B_1, \ldots, B_n) of S with $A_1 \sim \cdots \sim A_n$ and $B_1 \sim \cdots \sim B_n$, we must have $A_1 \sim B_1$.

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.