14.123 Microeconomics III—Problem Set 3

Muhamet Yildiz

Instructions. You are encouraged to work in groups, but everybody must write their own solution to the problem that is for grade. Good Luck!

- 1. (For Grade) There are finitely many states $s \in S$. The set of outcomes is $[0, \infty)$, the amount of consumption. Consider an expected utility maximizer with utility function $u(c) = \sqrt{c}$. Suppose that for each state $s \in S$, there is an asset A_s that pays 1 unit of consumption if the state is s and 0 otherwise (these are called Arrow-Debreu securities). Suppose also that we know the preference of the decision maker among these assets and the constant consumtion levels; e.g., we know how he compares an asset A_s to consuming c at every state.
 - (a) Derive the decision maker's preference relation among all acts from the above information.
 - (b) Assume that the decision maker has a fixed amount of money M, which he cannot consume unless he invests in the Arrow-Debreu securities above, assuming that these secrities are perfectly divisible, and the price of a unit of A_s is some $p_s > 0$. Derive the demand of the decision maker for these securities as a function of the price vector $p = (p_s)_{s \in S}$.
- 2. Ann is an expected utility maximizer, but she does not know her preferences, which she can learn by costly contemplation. To model this situation, take S = [0, 1], and let $Z \subseteq \mathbb{R}$ be a finite set of consequences with at leat two elements. Assume that Ann's von Neumann utility function is

$$u\left(z\right) = z \qquad \forall z \in Z,$$

and her belief on S is represented by uniform distribution. For any n and some fixed c > 0, by spending cn utils, Ann can obtain a partition

$$P_{n} = \{ [0, 1/2^{n}], (1/2^{n}, 2/2^{n}), \dots, (k/2^{n}, (k+1)/2^{n}), \dots, [(2^{n}-1)/2^{n}, 1] \}$$

and observe the cell $I_n(s) \in P_n$ in which the true state *s* lies. After the observation, she assigns uniform distribution on $I_n(s)$ and can choose an act $f: S \to Z$ under the new belief. Her eventual payoff is u(f(s)) - cn. Now imagine that, given any two acts f and g, Ann first chooses n and, after observing the cell in which s lies, she chooses one of the acts f and g. She does so in order to maximize her expected payoff minus the cost cn, knowing all along that she will choose one of the acts f and g optimally based on her observation. Write $f \succeq_s g$ if Ann may end up choosing f when the true state happens to be s. Check which of the postulates P1-P5 of Savage is satisfied by \succeq_s for any fixed s.

3. Under the assumptions P1-P5, prove or disprove the following statements.

(a) For any partition A_1, \ldots, A_n of S, and for any acts $f, g \in F$,

$$[f \succeq g \text{ given } A_k \text{ for all } A_k] \Rightarrow f \succeq g.$$

- (b) If $A_1 \succeq B_1$, $A_2 \succeq B_2$, and $A_1 \cap A_2 = \emptyset$, then $A_1 \cup A_2 \succeq B_1 \cup B_2$.
- (c) For any given event D, define " \succeq given D" by $A \succeq B$ given D iff $A \cap D \succeq B \cap D$. The relation \succeq given D is a qualitative probability.

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.