## 14.123 Microeconomics III—Problem Set 4

## Muhamet Yildiz

**Instructions.** You are encouraged to work in groups, but everybody must write their own solutions. Each question is 25 points. Good Luck!

- 1. Ann is ambiguity-averse and has constant absolute risk aversion  $\alpha$ . There is a stock that pays y per unit where  $y \sim N(\mu, \sigma^2)$  where  $\mu \in [\mu, \overline{\mu}]$  is ambiguous. (She maximizes  $\min_{\mu} E[u|\mu]$  where u is a CARA utility with  $\alpha$ .) Ann can buy or sell any amount of stock.
  - (a) Compute the demand of Ann for the stock as a function of price P of the stock.
  - (b) Suppose there are n copies of Ann and Y total units of stock. Find the market clearing price.
  - (c) Answer the above questions by assuming instead that Ann is an expected utility maximizer with  $\mu$  uniformly distributed on  $[\mu, \bar{\mu}]$ .
  - (d) Briefly discuss your answers.
- 2. There is an asset that pays y where y has c.d.f. F. Ann is a rank-dependent expected utility maximizer with linear utility (i.e. she is "risk-neutral") and with probability weighting function  $w: [0, 1] \rightarrow [0, 1]$  where  $w(x) = x^{\beta}$  for some  $\beta > 0$ .
  - (a) How much is she willing to pay for the asset if y is exponentially distributed. (You do not need to compute the integral.)
  - (b) Show that for any y with 0 < F(y) < 1, there exist  $\beta_1$  and  $\beta_2$  such that Ann is willing to pay less than y whenever  $\beta < \beta_1$  and willing to pay more than y whenever  $\beta > \beta_2$ .
- 3. Ann is as in Prospect Theory. She has a reference dependent utility function

$$u\left(x|x_0\right) = v\left(x - x_0\right)$$

where

$$v\left(y\right) = \begin{cases} y & \text{if } y \ge 0\\ \lambda y & \text{otherwise} \end{cases}$$

for some  $\lambda \geq 1$  and the reference point  $x_0$  is her initial wealth. Her probability weighting function is identity mapping (i.e. she does not distort the probabilities). For every initial wealth level, she is indifferent between accepting and rejecting a lottery that gives \$1 (gain) with probability p = 0.6 and -\$1 (loss) with probability (1 - p).

- (a) Find the smallest G for which Ann is willing to accept a lottery that gives G (gain) with probability 1/2 and -L = -100,000 (loss) with probability 1/2 consistent with above information.
- (b) Briefly discuss your finding by comparing to your answers to Problem 1 in Problem Set 3.

4. Ann and Bob are negotiating over dividing a dollar, as in alternating-offer bargaining. Ann makes an offer (x, 1 - x) and Bob accepts or rejects the offer. If the offer is accepted, the game ends, and Ann gets x and Bob gets 1 - x. If the offer is rejected, Bob makes an offer (y, 1 - y) day, and Ann decides whether to accept the offer. This goes on with alternating proposers until an offer is accepted. Assume that Ann and Bob both have hyperbolic discounting: according to the self at time t, getting x dollars at s has a value of  $\delta(s - t)$  for some decreasing function  $\delta : \mathbb{R} \to (0, 1)$ . Assuming that the players are sophisticated (i.e. the payoffs specified above are common knowledge), compute the subgame-perfect equilibrium. MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.