
Chapter 6 

Alternatives to Expected Utility 

Theory 

In this lecture, I describe some well-known experimental evidence against the expected 

utility theory and the alternative theories developed in order to accommodate these 

experiments. (I have posted a comprehensive survey on the class web page.) 

6.1 Calibration Paradox 

Under expected utility maximization, a decision maker is approximately risk neutral 

against a small risk whenever his utility function is differentiable at his initial wealth 

level, a condition that is satisfied for almost all initial wealth levels when the decision 

maker is risk averse. For example, she is always willing to invest some positive amount in 

an asset with positive expected utility. An implication of this result is that, if a decision 

maker is rejecting some small amount of risk with positive gain for a range of wealth 

levels, then he will not take any large risk even when there are very large potential gains, 

refusing to make any reasonable investment. 

To illustrate this, suppose first that DM  has  constant  absolute  risk-aversion   and 

plausibly rejects a gamble ($1 $ − 1; 06; 04) that gives 1 dollar with probability  = 06 

and −1 dollar with probability 1 − . Then, his absolute risk aversion must be at least 

ln (32), i.e.,  

 ≥ ln ( (1 − )) = ln 32 
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But such a decision maker would reject any gamble that involves a loss of 2 dollars with 

probability 1/2, no matter how larger the gains are with the remaining probabilty 1/2. 

Indeed, the payoff from such a gamble could be at most 

1 1 
1 − exp (− · (−2)) = 1 − (32)

2 
= −18 

2 2 

which is clearly less than 0, the expected utility from 0. (The utility function is  () =  

1 − exp (−).) 
That is, if we calibrate a decision maker’s utility function using constant risk-aversion 

from a plausible observation of rejecting a gamble ($1 $ − 1; 06; 04), we  then  reach  to  

the utterly implausible conclusion that the decision maker will not take any gamble 

that involes just 2 dollars loss with probability 1/2. It is tempting to take this as a 

critique of CARA utilities. Afterall, one expects absolute risk aversion to be decreasing 

(as in constant relative risk aversion), and CARA utilities used only for tractability of 

theoretical exercises. This is not the case. 

Rabin illustrates for any expected utility maximizer that if she would reject such 

gambles for a reasonably small interval [ − 100  + 100] of initial wealth levels, he will 

be rejecting any reasonable large gambles that one faces in real life, e.g. when she buys 

a house or starts up a new business. The idea is quite simple (once one is told). If 

she rejects ($1 $ − 1; 06; 04) for all initial weath levels in [ − 100  + 100], then  her  

absolute risk aversion throughout that interval is at least ln (32). That gives enough 

curviture over that interval to prohibit any risk taking behavior with large stakes. The 

illustration  if this is left as an  exercise.  

Exercise 6.1 Ann is a risk-averse expected utility maximizer with an increasing util-

ity function  : R → R. She  is  indifferent between accepting and rejecting a lottery 

($1−$1; 06 04) that gives $1 (gain) with probability  = 06 and −$1 (loss) with prob-
ability (1 − ) for all initial wealth levels in [0 − 100 0 + 100]. Find  the  smallest   

for which Ann is willing to accept a lottery that gives $ (gain) with probability 1/2 and 

−$ = −$100 000 (loss) with probability 1/2 consistent with above information. That 

is, find 

 ∗ = min  {| (+ 0) +   (−+ 0) ≥  (0)   ∈ } 

where  is the set of utility functions described above. 
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6.2 Allais Paradox and Weighted Utility 

Imagine yourself choosing between the following two alternatives: 

A Win 1 million dollar for sure. 

B Win 5 million dollar with 10% chance, 1 million dollar with 89%, nothing with 1%. 

Which one would you choose? In many surveys, subjects who were offered these 

alternatives chose A. It seems that they did not want to risk the opportunity of having 

a million dollar for a 10% chance of having five million dollar instead. Now consider the 

following two alternatives: 

C Win $1M with 11% chance, nothing with 89%. 

D Win $5M with 10% chance, nothing with 90%. 

It seems that the probability of winning the prize is similar for the two alternatives, 

while the prizes are substantially different. Hence, it seems reasonable to choose the 

higher prize, choosing D rather than C. Indeed, in surveys, the subjects choose D. 

Unfortunately, for an expected utility maximizer, the trade of between A and B is 

identical to the trade of between C and D, and he prefers A to B if and only if he prefers 

C to D. To see this, note that for an expected utility maximizer with utility function , 

A  is  better than B if  and only if   (1)  01 (5) + 089 (1), i.e., 

011 (1)  01 (5)  (6.1) 

where the unit of money is million dollar, and the utility from 0 is normalized to 0. But 

for such an expected utility maximizer, C is better than D if and only if (6.1) holds. 

The above experiment against the expected utility theory has been designed by Allais. 

It illustrates for the subjects surveyed that the indifference curves are not parallel, and 

hence the independence axiom is violated. This is illustrated in Figure 6.1. As shown 

in the figure, the lines connecting A to B and C to D are parallel to each other. Since 

A is better than B, the indifference curve through A is steeper than the line connecting 

A to B. Since D is better than C, the indifference curve through C is flatter than the 

line connecting C to D. Therefore, the indifference curve through A is steeper than the 

indifference curve through C. 
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Figure 6.1: Allais Paradox. The prizes are in terms of million dollars. Probability of 0 

is on the horizontal axis; the probability of 5 is on the vertical axis, and the remaining 

probability goes to the intermediate prize 1. 

A series of other experiments also suggested that the indifference curves are not 

parallel  and "fan out’  as  in the  figure. Consequently, decision theorists have developed 

many alternative theories in which the indifference curves are not parallel. These theories 

often assume that the indifference curves are straight lines, called betweenness. 

A prominent theory among these assumes that the indifference curves are straight 

lines that fan out from a single origin. This theory is called Weighted Utility Theory, as  

it assumes the following general form for the utility from a lottery : 

P 
 () =   (| ) () 

∈ 

where 
 ()  ()

 (| ) = P 
∈  ()  () 

for some function  :  → R. Here, the utilities are weighted according to not only the 

probabilities of the consequences but also according to the consequences themselves. Of 

course, if  is constant, the weighting is done only according to the probabilities, as in 

the expected utility theory. 

Exercise 6.2 Check that under the weighted utility theory, the indifference curves are 

straight lines, but the slope of the indifference curves differ when  is not constant. Tak-



53 6.2. ALLAIS PARADOX AND WEIGHTED UTILITY 

1.0 
w 
0.8 

0.6 

0.4 

0.2 

0.0 

p 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 6.2: Probability Weighting Function;  () =  −(− ln ) 
for some  ∈ (0 1). 

ing  with three elements, characterize the functions  and  under which the indifference 

sets fan out as in the Allais paradox. 

In the weighted utility theory, the decision maker distorts the probabilities using the 

consequences themselves and the whole probability vector . In general, probabilities 

need to be distorted if one wants to incorporate Allais paradox in expected utility theory. 

A prominent theory that distorts the probabilities to this end is rank-dependent expected 

utility theory. In this theory, one first ranks the consequences in the order of increasing 

utility. He then applies probability weighting function  to the cumulative distribution 

function  and distorts it to a new cumulative distribution function  ◦  . One  then  

finally uses expected utility under the distorted probabilities in order to evaluate the 

lottery. The resulting value function is Z 
 (|) =   ()  ( ())  (6.2) 

The survey results in the Allais paradox suggest that the subjects overestimate the 

small probability events with extreme value, such as getting nothing with a small proba-

bility. In order to capture such a behavior, one often uses an inverted  shaped probabil-

ity weighting function as in Figure 6.2. Here,  is an increasing function with  (0) = 0 

and  (1) = 1, and it crosses the diagonal once at some ∗ . The general functional form 

 () =  −(− ln ) 
for some  ∈ (0 1) has many desirable properties. 

Example 6.1 Consider the lotteries in the Allais paradox. Set  (0) = 0 and  (1) = 1. 
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The value of lottery B is computed as follows: 

 (|) =   (001)  (0) + [ (09) −  (001)]  (1) + (1 −  (09))  (5) 

=  (09) −  (001) + (1 −  (09))  (5)  

Similarly, the values of the other lotteries are 

 (|) = 1  

 (|) = 1  −  (089) 

 (|) = (1  −  (09))  (5)  

Now take  (5) ∈ (1  (− 1)) and  () =  −(− ln ) 
. Note that 

lim  (|) = 1   (1 − 1)  (5) = lim  (|) = lim  (|)  1−1 = lim  (|)  
→0	 →0 →0 →0 

Thus, for small , the preferences are as in the Allais paradox. 

6.3 Ellsberg Paradox and Ambiguity Aversion 

Consider an urn that contains 99 balls, colored Red, Black and Green. We know that 

there are exactly 33 Red balls, but the exact number of the other colors is not known. 

A ball is randomly drawn from this urn. You choose a color. 

•	 If the ball is of the color you choose, you win $1. What color would you choose? 

•	 If the ball is not of the color you choose, you win $1. What color would you 

choose? 

When different subjects are asked these questions, an overwhelming majority of them 

chose red ball in both questions. That is to say, in the first question, an overwhelming 

majority of the subjects bet on the event that the ball is red, and in the second question 

an overwhelming majority bet that the ball is not red. This can be taken as an evidence 

against the expected utility theory because an expected utility maximizer cannot have 

a strict preference in both questions. Indeed, if the probability of colors red, black, and 

green are , , and  , respectively, then having a strict preference for red in the first 

question means that 

   and   . 
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A strict preference for red in the second question means that 

1−   1−  and 1−   1− , 

i.e., 

   and   , 

a clear contradiction. 

This is called Ellsberg Paradox. Note that this is an evidence against the expected 

utility theory as formulated by Savage, assuming that the money is the consequence. 

In particular, it contradicts the basic assumption that the individuals have well-defined 

beliefs that give a well-defined probability for each consequence under each act. Within 

the framework of von Neumann and Morgenstern, this could be taken as an evidence 

against the fundamental modeling assumption that compound lotteries are reduced to 

the simple lotteries.  

Suppose that the decision maker believes that the each ball is equally likely to be 

drawn. Given the number  of black balls, the probability of each color is as follows: 

Pr (|) = 13 

Pr (|) = 99 

Pr (|) = 23− 99 

(Here,  means that the ball is red;  means that the ball is black, and  means that 

the ball is green.) Savage assumes that the decision maker has a belief  about . For  

every given belief  about , each bet yields a compound lottery. For example, the 

compound lotteries given by betting on the event  that the ball is red and betting on 

the event  that the ball is black are plotted in Figure 6.3. 

In expected utility theory, one further assumes that the compound lotteries are re-

duced to simple lotteries. This reduction yields the following probabilities for the color 

of the ball: 

 = 13 

66X 
 =  () 99 

 =0 

 = 23−  
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Figure 6.3: Compound lotteries in Ellsberg Paradox. The lottery on the left is the bet 

on the ball being red, and the lottery on the right is the bet on the ball being black. 

The reduced lottery from betting on  is $1 with probability  and $0 with probability 

1 − . (The reduced lotteries for the other bets are similar.) If  is symmetrically 

distributed, we would further have  =  = 13. In that case, the decision maker 

would be indifferent between betting on any color. Similarly, he would be indifferent 

between betting on the ball not being a given color. Since the decision maker would be 

indifferent between all alternatives, this would be consistent with the experiment above. 

However, under any asymmetric belief, he would not bet on red in either question. For 

example, if   , he would bet that the ball is Black in the first question, and he 

would bet that the ball is not Green in the second question. 

There is a sense  that  one may  want  to  treat the  lack  of  knowledge about  the number  

of balls in a given urn differently from the lack of knowledge about what ball has been 

drawn "randomly". They may somehow treat the latter case more as a case with an 

"objectively given probabilities", while treating the former case more "ambiguous". The 

former case is sometimes called Knightian Uncertainty or Ambiguity. 

A strand of literature treats such ambiguity differently. The most canonical theory 

in this literature, namely the theory of Ambiguity Aversion as analyzed by Gilboa and 

Schemeidler, assumes that the decision maker focuses on the worst-case scenario when 

it comes to ambiguity. He maximizes the minimum expected payoff in ambiguous cases. 
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For example, he takes the values of betting on events  and  as 

 () =  min 13 = 13 
 

 () =  min99 = 0 
 

 () =  min [23− 99] = 0 
 

Hence, in the first question, an ambiguity averse decision maker chooses to bet on the 

event that the ball is red. On the other hand, the value of betting on the event that the 

ball is not a given color is given by 

 () = min 23 = 23 
 

 () = min [1− 99] = 13 
 

 () = min {1− [23− 99]} = 13 
 

where   and   denote the complements of , , and  , respectively. Hence, 

in the second question, an ambiguity-averse decision maker chooses to bet that the ball 

is not red. 

More generally, theory of ambiguity aversion assumes that there are multiple priors 

 ∈  on state space , the  set   is the range of ambiguity. Given any , an  act   yields R 
an expected utility  [ () |] =   ( ())  (), where the outcome of an act can be a 

lottery as in the Anscombe and Aumann model. For any given act , the worst possible 

expected payoff is 

 () = min [ () |]  
∈ 

The decision maker maximizes this minimum expected utility. His choice function is Z 
 () = argmaxmin  ( ())  ()  

∈ ∈ 

Note that this is a theory of an irrational decision maker, who mistakenly assumes that 

his choices affect the underlying state of the world, which is given. 

Focusing on the worst-case scenarios is clearly an extreme behavior and yields a 

useless guide for behavior in many real-world problems. For, under a full support as-

sumption, the worst case scenario is the worst consequence, making the decision maker 

indifferent between all such acts. An alternative to above theory introduces the beliefs 

about the ambiguous states but treats these probabilities differently. It introduces a 
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probability distribution  on  and assumes that the decision maker maximizes Z µZ ¶
 () =   [ ( ())] =   ( ())  ()  ()  

where  : R → R is a concave function. Hence, the choice function is Z µZ ¶
 () = arg max [ ( ())] = arg max   ( ())  ()  ()  

∈ ∈ 

This theory is called Smooth Ambiguity Aversion. The ambiguity aversion is a particular 

−limit in which  gets extremely concave. For example, if we take  () =  − and 

let  → ∞, we would get the ambiguity aversion in the sense of max min. When   is 

degenerate (or equivalently  is singleton), this reduces to the standard expected utility 

theory. 

While Ellsberg paradox illustrates that the decision maker does not reduce the un-

certainty about the number of balls into a simple probability distrbution on winning, 

it is not clear whether she does it because she is ambiguity averse or whether she has 

difficilty in reducing compound lotteries to simple lotteries (failure of ROCL), due to 

perhaps some form of bounded rationality. Clearly, the two alternative theories have 

very different implication to the decision making in complex environments in economics. 

Fortunately, there is a simple test. One can provide the probabilities to decision maker 

(and describe the problem differently) so that the problem is a given compound lotteries. 

If the reason were ambiguity aversion, then DM would now act as an expected utility 

maximizer (as there is no ambguity). If the reason were failure of ROCL, then he would 

remain to differ from expected utility maximization, still behaving as in Ellsberg para-

dox. Indeed, Yoram Halevy has run such an experiment. His results are in Table I. With 

few exceptions, subjects deviated from expected utility theory (ambiguity neutrality) if 

and only if they failed to reduce compound lotteries (ROCL). Indeed, there were only 

one subject who could reduce the compound lotteries and would deviate from ambiguity 

neutrality. That is the only subject who fits the ambguity aversion model. 

6.4 Framing 

The theories so far all assumed that the decision is not affected by the way the decision 

problem is formulated. Actually, in many experiments, the way the problem is formu-

lated has a large impact on the decision. This phenomenon is called framing effect. The  
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Figure 6.4: 

following example, due to Kahneman and Tversky, illustrates this fact. They have asked 

to a group of subjects the following question. 

An outbreak of a disease is about to kill 600 people. There are two 

possible treatments A and B with the following results. 

A 400  people  die.  

B Nobody dies with 1/3 chance, 600 people die with 2/3 chance. 

Which treatment would you choose? 

In response to this question, 78% of subjects have picked treatment B. To a different 

group of subjects, they have offered the following treatments: 

C 200  people  saved.  

D All saved with 1/3 chance, nobody saved with 2/3 chance. 

This time, only 28% of subjects have picked D. But clearly, apart from wording, A is 

equivalent to C, and B is equivalent to D. By changing the wording of letting 400 people 

die to saving 200 people altered the way the subjects approached the problem. 

Unlike the previous theories, the next theory allows framing. 
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6.5 Prospect Theory 

Based on survey data, Kahneman and Tversky developed a theory of decision making 

in which the decision maker distorts the probabilities of events, as in rank-dependent 

expected utility, and evaluates the consequences according to a reference-dependent util-

ity function, which treats "gains" differently from the "losses". In addition, Kahneman 

and Tversky allow the decision maker to "edit" the problem in a way to simplify the 

problem before applying the above procedure. There are two versions of the theory. In 

the sequel, I describe the Cumulative Prospect Theory. 

In this theory, the reference point 0 plays a central role. The consequences that are 

above 0 are considered gains and the ones below 0 are considered losses. In  the  first 

stage, using a probability weighting function  as in the rank-dependent expected utility, 

one distorts the cumulative distributions of gains and losses separately. The probability 

weighting is done started from the extremes. Hence, the resulting cumulative density 

function for the losses is 

 (|0) = 1−  (1−  ()) for  ≤ 0 

The resulting cumulative density function for the gains is 

 (|0) =  ( ()) for  ≥ 0 

In the second stage, he evaluates each consequence according to a reference-dependent 

utility function 

 (|0) =  ( − 0) 

where  is an increasing function with the following properties (see Figure 6.5 for an 

illustration): 

•	  is concave on the positive numbers, i.e., the decision maker is risk-averse towards 

gains; 

•	  is convex on the negative numbers, i.e., the decision maker is risk-seeking towards 

losses; 

•	 there is a kink at 0, so that the decision maker is affected by small losses more 

than he is affected by equal amount of gains (loss aversion). 
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Figure 6.5: Value Function in Prospect Theory 

After distortion of probabilities and reference-dependent evaluation of consequences, 

the decision maker applies expected utility. The resulting value function for any given 

lottery  is Z 
 ( | 0 ) =   (|0)  (|0) Z Z 

=  ( − 0)  (1 −  (1 −  ())) +  ( − 0)  ( ())  
0 0 

Exercise 6.3 Take  () =   and ( √ 
 if  ≥ 0 

 () =  √ −2 − if    0 

Consider a lottery ticket  that pays 106 with probability 10−6 . How much is the decision 

maker willing to pay to buy the lottery ticket. Now suppose that there is a risk in the 

decision maker’s wealth, so that he can lose 106 with probability 10−6. (For  example,  his  

house can burn.) How much is he willing to pay for a full insurance against this risk? 

If both insurance and lottery ticket are sold by a risk neutral seller, what is the range of 

individually rational prices for each of them? 

Notice that in prospect theory, the decision is greatly affected by the reference point. 

If the reference is taken to be the smallest consequence available in the lotteries, the 
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individual is risk averse (and is a rank-dependent expected utility maximizer). If the 

reference is taken to be the largest consequence available in the lotteries, he is now 

risk-seeking (and a rank-dependent expected utility maximizer in the reverse order). If 

one can affect the reference point by framing the problem, he can have a great impact 

on the decision. In that case, the individuals in prospect theory are prone to framing. 

Although the reference point is very important for the theories, it is not clear what it 

should be (and it is left to be determined by the context).1 

Exercise 6.4 Take zero wealth as the reference point in the previous exercise. 

Exercise 6.5 Take  () =   and ( 
 if  ≥ 0 

 () =  
 otherwise 

for some  ≥ 1. Take the initial wealth level as the reference point. For every initial 

wealth level, DM is indifferent between accepting and rejecting a lottery that gives $1 

(gain) with probability  = 06 and −$1 (loss) with probability (1 − ). Find the smallest 

 for which DM is willing to accept a lottery that gives $ (gain) with probability 1/2 

and −$ = −$100 000 (loss) with probability 1/2 consistent with above information. 

1There are some recent studies that suggest possible alternatives as the reference point. 
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