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Model

» C =R = wealth level

» Lottery = cdf F (pdf f)

» Utility function u : R—R, increasing
» U(P) = Ex(u) = Ju()dF()

» Ex(x) = IxdF(x)
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Attitudes Towards Risk

DM is

» risk averse if Ef(u) < u(E¢ (x)) (VF)

» strictly risk averse if E; (u) < u(Eg(x)) (V “risky” F)
» risk neutral if E; (u) = u(Ef (x)) (VF)

» risk seeking if E; (u) 2 u(Eg (x)) (VF)

DMis

» risk averse if u is concave

» strictly risk averse if u is strictly concave

» risk neutral if u is linear

» risk seeking if u is convex

Certainty Equivalence

» CE(F) = u™'(U(F)=u™" (E¢(w))

» DM s
risk averse if CE(F) < E¢(x) for all F;
risk neutral if CE(F) = E, (x) for all F;
risk seeking if CE(F) 2 E, (x) for all F.

» Take DMI| and DM2 with u, and u,.

» DMI is more risk averse than DM2
<> u, is more concave than u,, i.e.,

< u, =g ° u, for some concave function g,
& CE|(F) = uy""(Ep(u))) = uy "' (Ex(uy)) = CEy(F)




Absolute Risk Aversion

» absolute risk aversion:
ry(x) = -u"(x)/u’(x)
» constant absolute risk aversion (CARA)
u(x) =-e*
» If x ~ N(u,0%), CE(F) = p- ac%2
» Fact: More risk aversion < higher absolute risk aversion
everywhere
» Fact: Decreasing absolute risk aversion (DARA)
S Vy>0, u, with uy(x)=u(x+y) is less risk averse

Relative risk aversion:

» relative risk aversion:
re(x) = -xu"(x)/u'(x)
» constant relative risk aversion (CRRA)
u(x)= x'*/(1-p),
» When p = |, u(x) = log(x).
» Fact: Decreasing relative risk aversion (DRRA)
& V>, u, with u,(x)=Zu(tx) is less risk averse
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Optimal Risk Sharing

N ={l,...,n} set of agents
S = set of states s
Each i has a concave utility function u; & an asset that pays x,(s)
A = set of allocations x =(x,,..., x,) s.t.for all s,
XS+ X,(8) S X))+t x,(5) = X(5) ()

V = E[u(A)] and V = comprehensive closure of V, convex

4
4
4
4

v v

x* = a Pareto-optimal allocation, v* = u(x*)

» Since V is convex, v* € argmax, _, 4,v,+...+ A v, for some
(A 04n)

» i.e.x* € argmax,_, E[4, u,(x,) +...+ Au,(x,) ]
» For every s, x*(s) maximizes A,u(x,(s)) +...+ 4, u,(x,(s)) s.t. (¥)
» For every (i), 24(¢(5)) = A (¢(5)

Optimal risk-sharing with CARA

> ux) = -exp(-0,x)

b ax(s) = ap(s) + In(Aa) - In(4,a)

» i.e. normalized consumption differences are state
independent

» Therefore,

where T4, -*+, T, are deterministic transfers with t; + --- +
T,=0.
» Optimal allocations are obtained by trading the assets.
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Application: Insurance

» wealth w and a loss of $| with probability p.
» Insurance: pays $1 in case of loss costs g;
» DM buys A units of insurance.

» Fact:If p = q (fair premium), then A = | (full insurance).
Expected wealth w — p for all A.
» Fact: If DMI buys full insurance, a more risk averse DM2
also buys full insurance.
CE,(\) < CE,(N) < CE(1) = CE,(1).

Application: Optimal Portfolio Choice

» With initial wealth w, invest a € [0,w] in a risky asset that
pays a return z per each $ invested; z has cdf F on [0,).

» U(a) =f0°o u(w + az — a)dF (z); concave

» It is optimal to invest a > 0 <> E[z] > I.

U(0) =f0°o u'w)(z — DdF(z) = u'(w)(Elz] - 1)).

» If agent with utility u, optimally invests a,, then an agent
with more risk averse u, (same w) optimally invests a, <
aj.

» DARA = optimal a increases in w.

» CARA = optimal a is constant in w.

» CRRA (DRRA) = optimal a/w is constant (increasing)
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Optimal Portfolio Choice — Proof

» u,=g(u,); g is concave; g'(u,(w)) = I.
v U(a) = Ju(wra(z-1))(z-1) dF(z)
» Uy'(a)- Uy'(@)=]Tuy (wha(z-1))- uy (wha(z-1))](z-1)dF(2)<
0.
guwraz-a))) <g'uw) =1 z>1.
u,(wra(z-1)) <u,(wta(z-1)) @ z> 1.

o, <a

Stochastic Dominance

» Goal: Compare lotteries with minimal assumptions on
preferences

» Assume that the support of all payoff distributions is
bounded. Support = [a,b].

» Two main concepts:
First-order Stochastic Dominance:A payoff distribution is
preferred by all monotonic Expected Utility preferences.
Second-order Stochastic Dominance:A payoff distribution is
preferred by all risk averse EU preferences.
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FSD

» DEF:F first-order stochastically dominates G < for every
weakly increasing u: R=R, Ju(x)dF(x) = [u(x)dG(x).

» THM:F first-order stochastically dominates G <

F(x) < G(x) for all x.

Proof:

» “Only if:” for F(x*) > G(x*), define u = 1,

» “If”:Assume F and G are strictly increasing and continuous
on [a,b].

» Define y(x) = F'(G(x)); y(x)  x for all x

» Ju(y)dF(y) = Ju(y())dF(y(x)) = Ju(y(x))dG(x) = Ju(x)dG(x)

MPR and MLR Stochastic Orders

» DEF: F dominates G in the Monotone Probability Ratio
(MPR) sense if k(x) = G(x)/F(x) is weakly decreasing in x.

» THM: MPR dominance implies FSD.

» DEF: F dominates G in the Monotone Likelihood Ratio
(MLR) sense if £(x) = G'(x)/F(x) is weakly decreasing.

» THM: MLR dominance implies MPR dominance.
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SSD

» DEF: F second-order stochastically dominates G < for
every non-decreasing concave u, Ju(x)dF(x) = Ju(x)dG(x).
» DEF: G is a mean-preserving spread of F <&y = x + ¢ for
some x ~ F,y ~ G,and ¢ with E[g|x] = 0.
» THM:Assume: F and G has the same mean.Then, the
following are equivalent:
F second-order stochastically dominates G.

G is a mean-preserving spread of F .
vt20,[) G(x)dx > [, F(x)dx.

SSD

» Example: G (dotted) is a mean-preserving spread of F
(solid).
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