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In class some of you asked about the relation between the continuity axiom and the topology 
on the set of lotteries. The purpose of Herstein and Milnor (1953): “An Axiomatic Approach to 
Measurable Utility” was precisely to have a version of the Von Neumann-Morgenstern Theorem 
without imposing topological assumptions on the set of lotteries. Their idea was to use the 
convex structure of the set of alternatives to state the continuity axiom. 

Let X be a convex set of alternatives. Let Á be a binary relation on X, that is, a subset of 
X ̂ X, reporting the preferences of the DM (Decision Maker). We say that a function U : X Ñ R 
represents Á if for all x, y P X 

x Á y ô Upxq ě Upyq. 

Moreover, we say that U is linear1 if for all x, y P X and α P r0, 1s 

Upαx ` p1 ´ αqyq “ αUpxq ` p1 ´ αqUpyq. 

Herstein and Milnor consider the following set of axioms (I will refer to axioms as A1,...): 

Axiom 1 (Weak Order). Á is complete and transitive 

Remark 1 (Transitivity). No one will ever consider a preference relation which is not transitive. 
However: Let X “ r0, 8q be dollars. Assume that Á on X is transitive. Furthermore, assume 
that there is E ą 0 such that, whenever |x ´ y| ď E, we have that x „ y. You can check that, no 
matter how small E is, the DM is indifferent between zero and one billion dollars. 

Remark 2 (Completeness). Incomplete preferences are much more interesting: if two alterna­
tives are very different from each other, the DM may not be able to rank them. Aumann (1962): 
“Utility Theory without the Completeness Axiom” was the first to develop a theory of incomplete 
preferences. Dubra, Maccheroni and Ok (2004): “Expected “Utility Theory without the Complete­
ness Axiom” characterizes incomplete preferences represented by a set of utilities U Ă RX : 

x Á y ô Upxq ě Upyq for all U P U . 
1It would be more proper to say that U is affine. 
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Axiom 2 (Continuity). For all x, y, z P X, the sets tα P r0, 1s : αx ` p1 ´ αqy Á zu and 
tβ P r0, 1s : z Á βx ` p1 ´ βqyu are closed. 

This version of the continuity axiom uses the topology of the unit interval and the convex 
structure of X, instead of putting a topology on X. You can check that the continuity axiom we 
saw in class implies A2.2 

1 11 1Axiom 3 (Independence). For all x, y, z P X, if x „ y, then x ` x `y „ x.2 2 2 2

This version of the independence axiom is much weaker than the version we saw in class. 
Proving the representation theorem under A3 is indeed much harder: 

Theorem 1 (Herstein and Milnor (1953)). The following statements are equivalent: 

(i) Á on X satisfies A1, A2 and A3. 

(ii) There exists a linear U : X Ñ R which represents Á. 

3This is known as the Mixture Space Theorem. We obtain the expected utility criterion as 
a corollary. Let C be a finite set of consequences, and consider ΔpCq, the set of lotteries. It is 
clear that ΔpCq is a convex set. 

Corollary 1 (Expected Utility). The following statements are equivalent: 

(i) Á on ΔpCq satisfies A1, A2 and A3. 

(ii) There exists u : C Ñ R such that for all p, q P ΔpCq 

ÿ ÿ

p Á q ô ppcqupcq ě qpcqupcq. 
cPC cPC 

Proof. To see that (ii) implies (i), define U : ΔpCq Ñ R such that for all p P ΔpCq 

ÿ

Uppq “ ppcqupcq. 
cPC 

It is clear that U is linear and represents Á. By the Mixture Space Theorem, Á satisfies A1, A2 
and A3, which means that (i) holds. 

On the other hand, to show that (i) implies (ii), observe that by the Mixture Space Theorem 
there is U : ΔpCq Ñ R which is linear and represents Á. For every c P C, denote by δc P ΔpCq

ř 

αnx ` p1 ´ αnqy Ñ αx ` p1 ´ αqy in X. 

the lottery putting probability one on 
This means that since U is linear 

c. Notice that any p P ΔpCq can be written as cPC ppcqδc. 

Uppq “ 
ÿ

cPC 
ppcqUpδcq. 

2Indeed, any meaningful topology on X has the property that: if αn Ñ α in r0, 1s, then 

3Herstein and Milnor consider for the set of alternatives an abstract notion of convex set, which they call 
mixture set, hence the name of the theorem. 
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Define u : C Ñ R such that upcq “ Upδcq for all c P C. Since U represents Á, for all p, q P ΔpCq 

ÿ ÿ

p Á q ô ppcqupcq “ Uppq ě Upqq “ qpcqupcq, 
cPC cPC 

which means that (ii) holds, concluding the proof. 

We are gonna prove a much simpler version of the Mixture Space Theorem under the stronger 
version of the independence axiom we saw in class: 

Axiom 4. For all x, y, z P X and α P p0, 1q 

x Á y ô αx ` p1 ´ αqz Á αy ` p1 ´ αqz. 

You can verify the following immediate implications of A4: 

Lemma 1. Assume that Á on X satisfies A4. Then for all x, y, z P X and α P p0, 1q 

x ą y ô αx ` p1 ´ αqz ą αy ` p1 ´ αqz, 

x „ y ô αx ` p1 ´ αqz „ αy ` p1 ´ αqz. 

I will first prove one direction of the Mixture space Theorem under the assumption that there 
are “extreme” alternatives: 

Axiom 5. There are x˚, x
˚ P X such that x˚ Á x Á x˚ for all x P X. 

Axiom A5 makes life easier because it guarantees that X is a preference interval. For x, y P X, 
the preference interval is the set 

rx, ys :“ tz P X : x Á z Á yu. 

˚If Á satisfies A5, then X “ rx˚, x s. Notice that, if Á satisfies A4, then preference intervals are 
convex subset of X (why?). 

Proposition 1. Assume that Á on X satisfies A1, A2, A4 and A5. Then there exists a linear 
function U : X Ñ R which represents Á. 

Once we have Proposition 1, it is not hard to drop A5, and prove the Mixture Space Theorem 
with A4 instead of A3: 

Proposition 2. The following statements are equivalent: 

(i) Á on X satisfies A1, A2 and A4. 

(ii) There exists a linear U : X Ñ R which represents Á. 
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In the next two sections we are gonna see the proofs of these two propositions. The proof of 
Proposition 1 is what you need to remember (it is just a rephrasing of the proof for expected 
utility that you have in the lecture notes). Proposition 2, instead, it is only for your curiosity. 
In fact, as long as we are concern with X “ ΔpCq, lotteries with a finite set of consequences, it 
can be shown that A5 is implied by A1, A2 and A4: 

Exercise 1. Assume that Á on ΔpCq satisfies A1, A2 and A4. Then Á satisfies also A5. 

Proof of Proposition 1 
˚Without loss of generality, assume that x ą x˚ (if not, set Upxq “ 0 for all x P X). The 

idea of the proof is to measure the utility of alternative x relative to the utility of the “extreme” 
alternatives x˚ and x˚ using the convexity of X. If x “ αx˚ ` p1 ´ αqx˚ for some α P r0, 1s, it 
is natural to assign utility α to x, and this would be a good idea to get linearity (why?). This 

˚idea, however, makes sense only if bigger weights on x are preferred by the DM. Thanks to 
independence axiom, this is the case: 

Lemma 2. Take α, β P r0, 1s such that α ą β. Then αx˚ ` p1 ´ αqx˚ ą βx˚ ` p1 ´ βqx˚. 

Proof. If α “ 1 and β “ 0, there is nothing to do. Assume now that α “ 1 and β P p0, 1q. Since 
x˚ ą x˚ 

˚αx˚ ` p1 ´ αqx˚ “ x “ βx˚ ` p1 ´ βqx ˚ ą βx˚ ` p1 ´ βqx˚, 

where the last “inequality” holds by A4. Assume now that β “ 0 and α P p0, 1q. Since x˚ ą x˚ 

αx˚ ` p1 ´ αqx˚ ą αx˚ ` p1 ´ αqx˚ “ x˚ “ βx˚ ` p1 ´ βqx˚, 

where the first inequality holds by A4. We are left with the case α, β P p0, 1q. Notice that 
β{α P p0, 1q, and therefore we can write 

β β 
αx˚ ` p1 ´ αqx˚ “ pαx˚ ` p1 ´ αqx˚q ` p1 ´ qpαx˚ ` p1 ´ αqx˚q. 

α α 

We have shown above that αx˚ ` p1 ´ αqx˚ ą x˚. So we can use A4 once again to get that 

β β β β 
pαx˚ ` p1 ´ αqx˚q ` p1 ´ qpαx˚ ` p1 ´ αqx˚q ą pαx˚ ` p1 ´ αqx˚q ` p1 ´ qx˚. 

α α α α 

Luckily 
β β 

pαx˚ ` p1 ´ αqx˚q ` p1 ´ qx˚ “ βx˚ ` p1 ´ βqx˚,
α α 

which concludes the proof. 

We cannot hope to write any alternative x as convex combinations of x˚ and x˚. However, 
since we have assumed that x˚ Á x Á x˚ (read A5), we can use the continuity axiom to show 
that x is indifferent to a convex combination of x˚ and x˚ . 
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˚Lemma 3. For any x P X, there is αx P r0, 1s such that x „ αxx˚ ` p1 ´ αxqx . 

Proof. Consider the set 

A “ tα P r0, 1s : αx˚ ` p1 ´ αqx˚ Á xu and B “ tβ P r0, 1s : x Á βx˚ ` p1 ´ βqx˚u. 

Since Á is complete, A Y B “ r0, 1s. Furthermore by A5 x˚ P A and x˚ P B, and therefore both 
A and B are nonempty. Finally, by A2, A and B are closed. Since the interval r0, 1s is connected, 
a basic result from real analysis tells us that A X B ‰ ∅. Therefore we can pick αx P A X B and 
be sure that x „ αxx˚ ` p1 ´ αxqx˚, as wanted. 

Thanks to Lemma 1 and 2, we can well define the function U : X Ñ R such that, for all x, 
4Upxq “ αx and be sure that it represents Á. The only remaining thing to prove is that U is 

linear. This is another consequence of the independence axiom: 

Lemma 4. The function U is linear.
 

Proof. Take x, y P X and λ P p0, 1q. We wish to show that
 

αλx`p1´λqy “ Upλx ` p1 ´ λqyq “ λUpxq ` p1 ´ λqUpyq “ λαx ` p1 ´ λqαy. 

By Lemma 2, we know there can be at most one α P r0, 1s such that λx`p1´λqy „ αx˚`p1´αqx˚. 
Hence, to show that αλx`p1´λqy “ λαx ` p1 ´ λqαy , it is enough to show that 

λx ` p1 ´ λqy „ pλαx ` p1 ´ λqαy qx ˚ ` p1 ´ pλαx ` p1 ´ λqαy qqx˚ 

“ λpαxx ˚ ` p1 ´ αxqx˚q ` p1 ´ λqpαyx ˚ ` p1 ´ αy qx˚q. 

Since x „ αxx
˚ ` p1 ´ αxqx˚ and y „ αyx

˚ ` p1 ´ αyqx˚, by A4 and transitivity 

λx ` p1 ´ λqy „ λpαxx ˚ ` p1 ´ αxqx˚q ` p1 ´ λqy 

„ λpαxx ˚ ` p1 ´ αxqx˚q ` p1 ´ λqpαyx ˚ ` p1 ´ αy qx˚q, 

as wanted. 

Proof of Proposition 2 

It is easy to see that (ii) implies (i). Therefore let’s focus on the other direction: (ii) implies 
˚(i). Without loss of generality, assume that there are x , x˚ P X such that x˚ ą x˚ (if not, just 

˚set Upxq “ 0 for all x P X). Take any pair x, y P X such that x Á x ą x˚ Á y. Applying 
Proposition 1 to Á on ry, xs, we can find a linear function Ux,y : ry, xs Ñ R which represents Á 

˚4To check that U is well defined, we need to verify that there exists a unique αx such that x „ αxx˚`p1´αxqx . 
Existence comes from Lemma 3, while uniqueness from Lemma 2. 
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5on ry, xs. Furthermore, we can choose Uxy such that Ux,y px˚q “ 0 and Ux,y px
˚q “ 0 (why?). 

Now define U : X Ñ R such that 

˚Upzq “ Ux,ypzq for x, y P X such that x˚, x , z P ry, xs. 

We need to prove that (i) U is well defined, (ii) U represents Á on X, and (iii) U is linear. 

Lemma 5. U is well defined. 

1 1 ˚ 1 1Proof. Fix z P X. Take x, y, x , y P X such that x˚, x , z P ry, xs, ry , x s. We wish to show 
˚that Ux,y pzq “ Ux1,y1 pzq: if so, U is well defined. There are three cases to consider: z Á x , 

˚z P rx˚, x s and x˚ Á z. We will only consider the case z Á x˚: the other two cases can be 
treated analogously. Assume therefore that x˚ P rz, x˚s. Since Ux,y represents Á on rz, x˚s, 

Ux,ypx ˚q P pUx,y px˚q, Ux,ypzqs. 

This means that we can find α P p0, 1s such that 

Ux,ypx ˚q “ αUx,ypzq ` p1 ´ αqUx,ypx˚q. 

Since we have chosen Ux,ypx˚q “ 1 and Ux,ypx˚q “ 0, we obtain Ux,ypzq “ 1{α. Furthermore, 
since Ux,y is linear on rz, x˚s: 

Ux,ypx ˚q “ αUx,ypzq ` p1 ´ αqUx,y px˚q “ Ux,y pαz ` p1 ´ αqx˚q. 

˚Hence, since Ux,y represents Á on rz, x˚s, we get that x „ αz ` p1 ´ αqx˚. But it is also true 
that Ux1,y represents Á on rz, x˚s, and therefore 1 

1Ux ,y1 px ˚q “ Ux1,y1 pαz ` p1 ´ αqx˚q. 

1 1Since Ux1,y1 is linear on rz, x˚s and we have chosen Ux ,y1 px˚q “ 1 and Ux ,y1 px˚q “ 0, we easily 
1 1get that also Ux ,y1 pzq “ 1{α, and therefore Ux,ypzq “ Ux ,y1 pzq, as wanted. 

Lemma 6. U represents Á. 

1Proof. Take z, z P X. We can certainly find a preference interval ry, xs big enough so that 
˚x , x˚, z, z1 P ry, xs. Then, using the fact that Ux,y represents Á on ry, xs: 

1 1z Á z ô Upzq “ Ux,ypzq ě Ux,ypz 1q “ Upz q, 

as wanted. 

Lemma 7. U is linear. 
5Note that Á on ry, xs satisfies also A5. 
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Proof. Take z, z1 P X and α P r0, 1s. We can certainly find a preference interval ry, xs big enough 
˚so that x , x˚, z, z1 P ry, xs. Since ry, xs is convex, αz ` p1 ´ αqz1 P ry, xs. Then, using the fact 

that Ux,y is linear: 

Upαz ` p1 ́  αqz 1q “ Ux,ypαz ` p1 ́  αqz 1q “ αUx,ypzq ` p1 ́  αqUx,ypz 1q “ αUpzq ` p1 ́  αqUpz q, 

as wanted. 

7 



MIT OpenCourseWare
http://ocw.mit.edu

14.123  Microeconomic Theory III
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

