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We will go over Savage’s subjective expected utility, and provide a very rough sketch of
the argument he uses to prove his representation theorem. Aside from the lecture notes, good
references are chapters 8 and 9 in “Kreps (1988): Notes on the Theory of Choice,” and chapter
11 in “Gilboa (2009): Theory of Decision under Uncertainty.”%

Let S be a set of states. We call events subsets of S, which we typically denote by A, B, C,...
Write S for the collection of all events, that is, the collection of all subsets of S.2 Let X a finite
set of consequence® A (Savage) act is a function f : § — X, mapping states into consequences.
Denote by F' the set of all acts, and % is a preference relation on F. As usual, > represents the
DM’s preferences over alternatives. In Savage, alternative are acts.

Now we introduce an important operation among acts: For f,g € F and A € S define the act
fag such that

ifseA
Fagls) = f(s) ifseA,
g(s) else.

In words, the act fag is equal to f on A, while equal to g on the complement on A4 This
operation allows us to make “conditional” statements: if A is true, this happens; if not, this

other thing happens.

Let’s list Savage’s axioms, which are commonly referred as P1, P2, ...
Axiom 1 (P1). The relation % is complete and transitive.
Usual rationality assumption.

Axiom 2 (P2). For f,g,h,h' € F and A€ S,

fah z gah < fah' z gal.

LGilboa gives a broad overview, while Kreps provides more details and is more technical.

2Technicality: there are no algebras nor sigma-algebras in Savage’s theory.

3Savage works with an arbitrary (possibly infinite) X. If so, another axiom, called P7, should be added to the
list. It is a technical axiom, unavoidable but without essential meaning.

4Usually fag is defined as the act which is equal to g on A, while equal to f otherwise. Of course the different
in the definition is irrelevant.



“Sure-thing principle.” To state the next axion, say that an event A € § is null if z oy ~ yazx
forall z,ye X2

Axiom 3 (P3). For A€ S not null event, f € F and z,y € X,
rxy < wafzyal
Monotonicity (state-by-state) requirement.
Axiom 4 (P4). For Ae S and z,y,w,z € X withx >y and w > z
TAY T TRY S WAZ T WBZ.

Provide a meaning to likelihood statement defined by betting behavior (see > later).
Axiom 5 (P5). There are f,g € F such that f > g.
This is simply a non-triviality requirement.

Axiom 6 (P6). For every f,g,h € F with f > g there exists a finite partition {A1,...,An} of
S such that for alli=1,....n

h/Aif>g and f>hAig'

Innovative Savage’s continuity axiom. From now on we will assume that X satisfies P1-
P6. We will sketch Savage’s argument to find a utility function v : X — R and a probability
P:S — [0,1] such that for every f,g € F

fzg <= Eplu(f)]= Ep[u(g)]

The first part of the argument is devoted to elicit P (step 1 and 2). The second part, instead,
find u by using the elicited P (step 3).

Step 1: Qualitative Probability

Take two consequences z,y € X such that z > y. Define the binary relation % over S such that
AZB if TAY T TRY.

From P4 the definition of % does not depend on the choice of z and y. We interpret the statement
“A>B” as “the DM considers event A at least as likely as event B.” We do so because, according

to T oy Z xBY, the DM prefers to bet on A rather than on B.

Claim 1. The relation X satisfies the following properties:

5Null events will be the events with zero probability, events that the DM is certain they will not happen.



(i) % is complete and transitive.
(ii) Ax@ forall AeS.
(iii) S3@
(iv) if AnC = BnC =@, then AZB if and only if AU CzA U B.
(v) If A>B, then there is a finite partition {C1,...,Cy,} of S such that

ASBuUCy Vk=1,...,n.

This claim is relatively easy to prove. Because % satisfies (i)-(iv), X is called a qualitative
probability. Savage’s main innovation is (v), which comes from P6. Indeed, if only (i)-(iv) are

satisfied, we may not be able to find a numerical representation of %.

Step 2: Quantitative Probability

A quantitative probability is a function P : & — [0,1] such that (i) P(S) = 1, and (ii)
P(Au B) =P(A) + P(B) when An B=g%

Claim 2. There exists a quantitative probability P representing the qualitative probability X:
A>*B < P(A)>P(B) VA,BeS.

Furthermore, for all A € § and « € [0, 1] there exists B < A such that P(B) = aP(A).

The second part of the claim says that PP is non-atomic: any set with positive probability
can be “chopped” to reduce its probability by an arbitrary amount. For instance, the uniform
distribution has this property. Observe that there cannot be a non-atomic probability defined
on a finite set (why?). Therefore, Savage’s theory does not apply when S is finite. The proof of
Claim 2 is somehow the core of Savage’s argument, and the one thing should be remembered.

Let’s see an heuristic version of it:

“Proof”. Fix an event B. We wish to assign a number P(B) € [0,1] to B representing the
likelihood of B according to DM. To do so, first we use (v) in Claim 1 to find for every n = 1,2,...
a partition {A{™ ..., A} of S such that A< .. <A, Clearly we should assign probability
1/2™ to event Agn) for i = 1,...,2", and we can use this to assign a probability to B. Indeed,
for every n we can find k(n) € {1,...,2"} such that

ORI AM g g G 4l

STechnicality: note that P is additive, but possibly not sigma-additive.



This means that the probability of B should be at most k(n)/2"™ and at least (k(n) —1)/2"™. As

n gets large, the bounds on the probability of B get closer and closer, so it makes sense to define

Then there is a substantial amount of work to verify that this guess for P(B) is actually correct,

and the resulting P meets the requirements (additivity, representing ). O

Step 3: Acts as Lotteries

Now that we have a probability P over S, it is “not hard” to elicit u. The idea is to find a way
to apply the mixture space theorem. First we use acts to induce lotteries over X. For f € F,
define Py € A(X) as the distribution of f under P, that is: for all z € X

Pr(x) =P({seS: f(s) =z}).
If the P we found is correct, better be the case that P; and P, contain all the information about
f and g the DM uses to rank f and g. In fact:

Claim 3. For every f,ge F, if Py = Py, then f ~ g.

This claim is very tedious to prove. It is easier to prove the following, using the fact that P

is non-atomic (second part of Claim 2):
Claim 4. A(X) ={Py: feF}.

The claim says that for any lottery over X we can find an act generating it. Therefore, using
Claim 3 and 4 we can well define a preference relation >* over A(X) such that for P,Q € A(X)

P x* @ if there are f,g € F such that P = P;,Q = P, and f X g.

Claim 5. The relation x* on A(X) satisfies the assumption of the mixture space theorem (com-

plete and transitive, continuity, independence).

Once we have Claim 5, we can apply the mixture space theorem and find v : X — R such
that for all P,@Q € A(X)

Pz*Q < Z P(z)u(z) = Z Q(z)u(x).

zeX zeX

Now we have both P and u. Hence we can go back to % and verify that for all f,ge F

fzg <  Eplu(f)]= Eplu(g)]-
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