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We will go over Savage’s subjective expected utility, and provide a very rough sketch of 
the argument he uses to prove his representation theorem. Aside from the lecture notes, good 
references are chapters 8 and 9 in “Kreps (1988): Notes on the Theory of Choice,” and chapter 
11 in “Gilboa (2009): Theory of Decision under Uncertainty.”1 

Let S be a set of states. We call events subsets of S, which we typically denote by A, B, C,... 
Write S for the collection of all events, that is, the collection of all subsets of S. 2 Let X a finite  
set of consequence.3 A (Savage) act is  a function  f : S Ñ X, mapping  states into  consequences.  
Denote by F the set of all acts, and Á is a preference relation on F . As  usual,  Á represents the 
DM’s preferences over alternatives. In Savage, alternative are acts. 

Now we introduce an important operation among acts: For f, g P F and A P S define the act 
f

A

g such that 

f

A

gpsq “  

$
& 

% 
fpsq if s P A, 

gpsq else. 

4In words, the act f
A

g is equal to f on A, while  equal  to  g  on  the  complement  on  A. This 
operation allows us to make “conditional” statements: if A is true, this happens; if not, this 
other thing happens. 

Let’s list Savage’s axioms, which are commonly referred as P1, P2, ... 

Axiom 1 (P1). The relation Á is complete and transitive. 

Usual rationality assumption. 

Axiom 2 (P2). For f, g, h, h1 P F and A P S, 

f

A

h Á g
A

h ô f

A

h

1 Á g
A

h

1 
. 

1Gilboa gives a broad overview, while Kreps provides more details and is more technical. 
2Technicality: there are no algebras nor sigma-algebras in Savage’s theory. 
3Savage works with an arbitrary (possibly infinite) X. If so, another axiom, called P7, should be added to the 

list. It is a technical axiom, unavoidable but without essential meaning. 
4Usually fAg is defined as the act which is equal to g on A, while  equal  to  f otherwise. Of course the different 

in the definition is irrelevant. 
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“Sure-thing principle.” To state the next axion, say that an event A P S is null if x
A

y „ y
A

x 
for all x, y P X. 5 

Axiom 3 (P3). For A P S not null event, f P F and x, y P X, 

x Á y ô x

A

f Á y
A

f. 

Monotonicity (state-by-state) requirement. 

Axiom 4 (P4). For A P S and x, y, w, z P X with x ° y and w ° z 

x

A

y Á x
B y ô w

A

z Á w
B z. 

Provide a meaning to likelihood statement defined by betting behavior (see Á9 later). 

Axiom 5 (P5). There are f, g P F such that f ° g. 

This is simply a non-triviality requirement. 

Axiom 6 (P6). For every f, g, h P F with f ° g there exists a finite partition tA1, . . . , An

u of 
S such that for all i “ 1, . . . , n  

h

Ai f ° g and f ° h
Ai g. 

Innovative Savage’s continuity axiom. From now on we will assume that Á satisfies P1­
P6. We will sketch Savage’s argument to find a utility function u : X Ñ R and a probability 
P : S Ñ r0, 1s such that for every f, g P F 

f Á g ô EPrupfqs• EPrupgqs. 

The first part of the argument is devoted to elicit P (step 1 and 2). The second part, instead, 
find u by using the elicited P (step 3). 

Step 1: Qualitative Probability 

Take two consequences x, y P X such that x ° y. Define  the  binary  relation  Á9 over S such that 

AÁ9 B if x

A

y Á x
B y. 

From P4 the definition of Á9 does not depend on the choice of x and y. We  interpret  the  statement  
“AÁ9 B” as  “the  DM  considers  event  A at least as likely as event B.” We do so because, according 
to x

A

y Á x
B y, the  DM  prefers  to bet on  A rather than on B. 

Claim 1. The relation Á9 satisfies the following properties: 
5Null events will be the events with zero probability, events that the DM is certain they will not happen. 
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(i) Á9 is complete and transitive. 

(ii) AÁ9 ? for all A P S. 

(iii) S°9 ? 

(iv) if A X C “ B X C “ ?, then  AÁ9 B if and only if A Y CÁ9 A Y B. 

(v) If A°9 B, then  there  is  a finite  partition  tC1, . . . , Cn

u of S such that  

A°9 B Y C

k @k “ 1, . . . , n.   

This claim is relatively easy to prove. Because Á9 satisfies (i)-(iv), Á9 is called a qualitative 
probability. Savage’s main innovation is (v), which comes from P6. Indeed, if only (i)-(iv) are 
satisfied, we may not be able to find a numerical representation of Á9 . 

Step 2: Quantitative Probability 

A quantitative probability is a function P : S Ñ r0, 1s such that (i) PpSq “  1, and  (ii)  
6PpA Y Bq “ PpAq ` PpBq when A X B “ ?. 

Claim 2. There exists a quantitative probability P representing the qualitative probability Á9 : 

AÁ9 B ô PpAq • PpBq @A,B P S. 

Furthermore, for all A P S and ↵ P r0, 1s there exists B Ä A such that PpBq “ ↵PpAq. 

The second part of the claim says that P is non-atomic: any set with positive probability 
can be “chopped” to reduce its probability by an arbitrary amount. For instance, the uniform 
distribution has this property. Observe that there cannot be a non-atomic probability defined 
on a finite set (why?). Therefore, Savage’s theory does not apply when S is finite. The proof of 
Claim 2 is somehow the core of Savage’s argument, and the one thing should be remembered. 
Let’s see an heuristic version of it: 

“Proof”. Fix an event B. We wish to assign a number PpBq P r0, 1s to B representing the 
likelihood of B according to DM. To do so, first we use (v) in Claim 1 to find for every n “ 1, 2, . . .  

pnq pnq pnq pnqa partition  tA , . . . , A u of S such that A „9 . . .  „9 A . Clearly we should assign probability 1 2n 1 2n 

1{2n to event Apnq for i “ 1, . . . , 2n, and  we  can  use  this  to  assign  a  probability  to  B. Indeed, 
i 

for every n we can find kpnq P t1, . . . , 2nu such that 

kpnq pnq kpnq´1 pnqY A °9 BÁ9 Y A .

i“1 i i“1 i 

6Technicality: note that P is additive, but possibly not sigma-additive. 
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This means that the probability of B should be at most kpnq{2n and at least pkpnq ´  1q{2n. As  
n gets large, the bounds on the probability of B get closer and closer, so it makes sense to define 

kpnqPpBq “  lim . 
nÑ8 2n 

Then there is a substantial amount of work to verify that this guess for PpBq is actually correct, 
and the resulting P meets the requirements (additivity, representing Á9 ). 

Step 3: Acts as Lotteries 

Now that we have a probability P over S, it  is  “not  hard”  to  elicit  u. The idea is to find a way 
to apply the mixture space theorem. First we use acts to induce lotteries over X. For  f P F , 
define P

f P �pXq as the distribution of f under P , that is:  for all  x P X 

P

f pxq “  Ppts P S : fpsq “  xuq. 

If the P we found is correct, better be the case that P
f and P

g contain all the information about 
f and g the DM uses to rank f and g. In fact: 

Claim 3. For every f, g P F , if  P
f “ P

g

, then  f „ g. 

This claim is very tedious to prove. It is easier to prove the following, using the fact that P 
is non-atomic (second part of Claim 2): 

Claim 4. �pXq “ tP
f : f P F u. 

The claim says that for any lottery over X we can find an act generating it. Therefore, using 
Claim 3 and 4 we can well define a preference relation Á˚ over �pXq such that for P, Q P �pXq 

P Á˚ 
Q if there are f, g P F such that P “ P

f , Q  “ P
g and f Á g. 

Claim 5. The relation Á˚ on �pXq satisfies the assumption of the mixture space theorem (com­
plete and transitive, continuity, independence). 

Once we have Claim 5, we can apply the mixture space theorem and find u : X Ñ R such 
that for all P, Q P �pXq 

P Á˚ 
Q ô 

ÿ
P pxqupxq • 

ÿ
Qpxqupxq. 

xPX xPX 

Now we have both P and u. Hence  we  can  go  back  to  Á and verify that for all f, g P F 

f Á g ô EPrupfqs• EPrupgqs. 
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