Behavioral Economics and Finance Spring 2004 Problem-set 1: Prospect Theory Due: March 3¹

Reminder: The continuus PT value is

$$\mathbf{V} = \int_0^\infty v(x)f(x)\pi'(p(\widetilde{x} \ge x))dx + \int_{-\infty}^0 v(x)f(x)\pi'(p(\widetilde{x} \le x))dx$$

where f is the lottery density, π is the probability weighing function, and

$$v(x) = \begin{cases} x^{\beta}, x > 0\\ -\lambda(-x)^{\beta}, x < 0 \end{cases}$$

1. Lottery behavior.

Lottery tickets win a unique prize of value G with probability p. They are sold at price C > pG. So, if you buy n tickets, then the probability to win G is np.

- (a) Write the Prospect-Theory value V(n) of buying *n* tickets. Give a first order approximation under the assumption $pn \ll 1$.
- (b) Using the Prelec weighing function $\pi(p) = \exp(-(-\ln(p))^{\alpha})$, find under what conditions a Prospect-Theory agent would buy at least one ticket. Compare with an expected utility agent agent.
- (c) Compute the number of tickets bought, n^* (under the assumption $pn \ll 1$). Evaluate numerically for reasonable values of the parameters (e.g. $p = 10^{-6}, G = 10^{6}, C = 2, \lambda = 2, \alpha = .85, \beta = .65$).
- (d) Give an analytic expression of V(n) for np small. Plot V(n) as a function of n.
- (e) Comment: does Prospect-Theory offer a good explanation of observed lottery behavior? How would you fix the theory?

2. Portfolio choice and Prospect-Theory.

Consider agents who behave as Prospect-Theory utility maximizers under an horizon T. They allocate their wealth between an index fund and a risk free asset. Allocating a proportion θ of their wealth in stocks gives value of the invested portfolio $\theta e^{\tilde{R}(T)} + (1 - \theta)e^{rT}$ where $\tilde{R}(T) \sim N(\mu T, \sigma^2 T)$. For numerical applications, use $\mu = 6\%$, r = 0, $\sigma = .17$.

(a) Write the Prospect-Theory utility associated to θ .

In what follows, you can for simplicity take a simple loss aversion reduced form of PT: the weighting function is replaced by actual probabilities and $v(x) = \begin{cases} x, x > 0 \\ \lambda x, x < 0 \end{cases}$

- (b) For which horizon $T(\theta_0)$ will people start to be willing to put a small amount θ_0 in equity? Compare with an expected utility maximizer. How would your answer change if agents were computing/perceiving gains and losses on 2 separate mental accounts, one for bonds, one for equity?.
- (c) Plot $V(\theta)$ as a function of θ .
- (d) Do you think prospect theory solves the equity premium puzzle (as argued in Bernartzi&Thaler, QJE95)?
- 3. Decision rule of a PT agent. During lecture 2 we assumed that there exists a PT agent who accepts a gamble with normal distribution of mean μ and the standard deviation σ if and only if $\frac{\mu}{\sigma} > k$ for some parameter k. Was this assumption justified?
- 4. **Big problem.** Take one of the problems of PT that were discussed during lecture 2, on Thursday Feb 12, and try to solve it.