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Vast body of experimental evidence, demonstrates that discount rates are 
higher in the short-run than in the long-run. 

Consider a final thought experiment: 

• Choose a ten minute break today or a fifteen minute break tomorrow.


• Choose a ten minute break in 100 days or a fifteen minute break in 
101 days. 



Resolution to discount rate evidence:


Adopt discount functions that imply high discount rates in the short-run 
and low discount rates in the long-run. 

1E.g., ∆ (τ) = 1+
1
κτ instead of ∆(τ) = δτ . If ∆(τ) = 1+κτ , then the 

instantaneous discount rate will be: 
−d∆(τ)/dτ = −d1+1κτ/dτ 

∆(τ) 1
1+κτ 

κ(1 + κτ)−2 
=
 (1 + κτ)−1 

κ=
(1 + κτ)
The discount rate declines with τ. Moreover, as τ goes to infinity, the 
discount rate goes to zero. 



0.1 Quasihyperbolic discount functions:


• So far, we’ve worked with discount functions that are defined in both 

continuous-time 

t ∈ [0,∞) 
and discrete-time


t ∈ {0, 1, 2, ...}.


• For example, δτ and 1+
1
κτ are defined for all non-negative values of τ. 

• We’ll now consider a discount function that is only defined for discrete 

time. 



� 

� 

• The quasihyperbolic discount function (HDF) is:

if τ = 0 ∆H(τ) = 

1 .β · δτ if τ ∈ {1, 2, ...}


We’ll sometimes use the easier notation:

∞{∆H(τ)}τ=0 = {1, βδ, βδ2, βδ3, ...} 

• Note that this function looks a little bit like the exponential discount 
function: 

1 if τ = 0 ∆E(τ) = δτ = δτ if τ ∈ {1, 2, ...} 
Here again, it is more natural to write: 

∞{∆E(τ)}τ=0 = {1, δ, δ2, δ3, ...} 



Let’s consider the HDF in greater detail.


• We’ll typically assume that β ≃ 1
2 and δ ≃ 1 

• For these values the HDF takes on values

1 1 1
∞{∆H(τ)}τ=0 = {1, βδ, βδ2, βδ3, ...} = {1, 2, 2, 2, ...} 

• Intuition: relative to the current period, all future periods are worth 
less (weight 1).2

• Most (for this example, all) of the discounting takes place between 
the current period and the immediate future. 



• There is little (for this example, no) additional discounting between 

future periods. 

• HDF captures the property that most discounting occurs in the short-
run – utils today are twice as valuable as utils tomorrow. 

• In the long-run we’re relatively patient – utils tomorrow are just as 
valuable as utils the day after tomorrow. 



Thinking about the discount rate in discrete time.


• We can’t differentiate ∆(τ) with respect to τ if this function is only
defined at discrete points τ ∈ {0, 1, 2, ...} 

• So we use differences to approximate derivatives.


• In continuous-time we define the discount rate at horizon τ as the rate 
of decline of the discount function 

−d∆(τ)/dτ


∆(τ)




• In discrete-time we define the discount rate at horizon τ as the rate 

of decline of the discount function 

−∆(τ) −∆(τ − 1)

∆(τ − 1)




• For the exponential discount function, this discrete-time definition im-
plies that the discount rate is 

−∆E(τ) −∆E(τ − 1) = −δτ − δτ−1 

∆E(τ − 1) δτ−1 
= 1 − δ 
≃ − ln δ 

• Note that this discrete-time discount rate does not depend on the 
horizon τ ∈ {1, 2, 3, ...}.. 

• Note too that this discrete-time discount rate is approximately equal 
to the discount rate implied by the continuous-time definition. 



• For HDF, discount rate depends on the horizon.


• When τ = 1


ρ̂ (τ) = −∆H(1) −∆H(0) = −βδ − 1


∆H(0) 1

= 1 − βδ


( = 
1)
2


• For our example, short-run discount rate is 50%.




• When τ ∈ {2, 3, 4, ...}


ρ̂ (τ) = −∆H(τ) −∆H(τ − 1) = −βδτ − βδτ−1 

∆H(τ − 1) βδτ−1 
= 1 − δ


≃ − ln δ


( = 0)


• For our example, long-run discount rate is 0%.




0.2 Doing a problem set with a commitment technology


• Consider the decision of when to do a problem set.


• The cost of doing the problem set increases, the later that you start 
(say that starting it later makes it more difficult to get help from the 
TA). 

• You could do the problem set during one of three periods.


• At date 0, the cost of doing the problem set is 1. 

• At date 1, the cost of doing the problem set is .32




• At date 2, the cost of doing the problem set is 52. 

• You have a hyperbolic discount function: 
2{∆(τ)}τ=0 = {1, βδ, βδ2}. 

• To simplify matters, set β = 12 and δ = 1, so 

1 1}.2{∆(τ)}τ=0 = {1, 2, 2



• Assume that the agent has a commitment technology (study group). 
When would the agent commit to do the problem set? 

• If the problem set is done at period 0, the discounted cost is ∆(0) · 1 =

1. 

3
2
If the problem set is done at period 1, the discounted cost is ∆(1)
• · =


3
4
.


5
2
If the problem set is done at period 2, the discounted cost is ∆(2)
• · =


5
4
. 

• So commit to do the problem set at period 1.




0.3 Doing a problem set without commitment.

• Now suppose that the student does not have access to a commitment 
technology. 

• Suppose the student is naive about her own behavior, and thinks that 
whatever plans she makes today will actually be carried out. 

• This is the naive case.


• So at date 0, she wants to do the problem set at date 1. We proved 
this on the previous slide. 

• So at date 0, she doesn’t do the problem set expecting to do it at date

1. 



• Assume that period 0 has passed and period 1 has arrived.


• We’ll refer to the self that makes decisions at period 1 as “self 1.” 

• What does self 1 want to do? 

• If period 1), the discounted cost

3
2 

the problem set is done “today” (

rom the perspect lf 1 is ∆(0)
 3

2
f ive of se ·
 = . 

If the problem set is done “tomorrow” 
rom the perspect

(

·
52 
period 2)
, the discounted cost
•


5
4
f ive of self 1 is ∆(1) = . 

• So self 1 does NOT want to do the problem set during period 1.




• Self 1 prefers to again postpone the problem set another period.


• Self 1 delays the problem set until period 2, violating the wishes of 
self 0. 

• Is this procrastination? Self 0 planned to do the problem set in period


1. 

• Self 1, delays the problem set until period 2. 



Naives:


• Naive selfs choose under the (false) assumption that later selves will 
do what the earlier self wants. 

• In the problem above, the naif equilibrium is to do the problem set in

period 2, even though self 0 expects to do the problem set in period


1.




Sophisticates:


• Sophisticate selfs make decisions based on correct beliefs about the 

choices of later selves. 

• The sophisticate equilibrium is the same as a subgame perfect Nash 
equilibrium. Every self has correct beliefs above the play of later 
selves, and every self optimizes in every subgame. 



How would a sophisticate play the game above? Use backwards induction.


• By assumption, if the problem set is not done in either period 0 or 1, 
then the problem set will be done in period 2. (It has to get done, 
since period 2 is the last period in the game.) 

• Now go back to period 1.


• Self 1 has the choice of doing the problem set in period 1 or leaving 

the problem set to period 2. 



• Self 1 prefers to wait.

3∆(0) · 3 =
2 25∆(1) · 5 =
2 4 

So if it’s not done before period 1, it won’t get done until period 2. 

• Self 0 would like the task to be done in period 1.

∆(0) · 1 = 1 

3∆(1) · 3 =
2 45∆(2) · 5 =
2 4 
But, self 0 correctly anticipates that self 1 won’t do it after all. 



• So self 0 faces the effective choice of doing it in period 0 or doing it 
in period 2. Period 0 is preferred (1 < ), so self 0 does it in period 

0 to avoid delaying it until period 2. 
5
4




In this problem sophisticates did the problem set “too early” to avoid doing 

it “too late.” However, sometimes even sophisticates can do things “too 
late.” 

Consider the following slightly different cost structure:


• At date 0, the cost of doing the problem set is 1.


• At date 1, the cost of doing the problem set is
 . 

• At date 2, the cost of doing the problem set is
 . 

5
6

3
2




With commitment, it will be done in period 1.


Without commitment, naifs will do it in period 2.


Without commitment, sophisticates will do it in period 2!




0.4 What’s wrong with these models?


0.4.1 Naives 

• Consider a naif with β =
12
 and δ = 1. 

• The naif has to finish a project by deadline T . 

• In time period t, the (undiscounted) project costs � �t utils to execute. 3
2


• When will the naif do the project?




From the current self’s perspective, it’s always better to postpone doing 
the project until next period: 

� 3�t > βδ
� 3�t+1 

2 2 
� 3�t+1 1
= 2 2 
� 3�t3
= 4 2 

When will the project be completed? 



0.4.2 Sophisticates:


Consider the same model as above.


When will a sophisticate do the project?


On the next problem set you will prove the following two claims:


1. If T is even, then sophisticates will do the project in even periods (and 
not in odd periods). 

2. If T is odd, then sophisticates will do the project in odd periods (and 
not in even periods). 


