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Midterm 

• This is a closed book exam, but two 81
2 
00 × 1100 sheets of notes (4 sides total) are

allowed.

• Calculators are not allowed.

• There are 3 problems, each carrying 10pts, on the exam.

• The problems are not necessarily in order of difficulty.

• Record all your solutions in the answer booklet provided. NOTE: Only the
answer booklet is to be handed in—no additional pages will be con-
sidered in the grading. You may want to first work things through on the
scratch paper provided and then neatly transfer to the answer sheet the work
you would like us to look at. Let us know if you need additional scratch paper.

• A correct answer does not guarantee full credit, and a wrong answer does not
guarantee loss of credit. You should clearly but concisely indicate your reasoning
and show all relevant work. Your grade on each problem will be based on
our best assessment of your level of understanding as reflected by what you have
written in the answer booklet.

• Please be neat—we can’t grade what we can’t decipher!
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Clustering 

Consider the Erdos-Renyi random graph G1(n, p) with mean degree a. 

(a) (2pt) Show that in the limit of large n, the expected number of triangles in the
network is a constant.

(b) (2pt) Calculate the clustering coefficient C in the limit of large n.
Note: The clustering coefficient is defined as three times the number of triangles
divided by the number of connected triplets. A “connected triplet” means three
vertices uvw with edges (u, v) and (v, w). The edge (u, w) can be present or
not.

(c) (2pt) Calculate the clustering coefficient C for the Erdos-Renyi random graph

G2(n, p) with p(n) = a log(n)/n. Compare your answer with part (b) in the
limit of large n.

(d) (2pt) Compare the ratio of the diameters of G1 and G2 in the limit of large n.
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(e) (2pt) Now, consider a different construction for a random graph model. We 
take n vertices and go through each distinct trio of three vertices and with 

a 
independent probability p = connect the trio using three edges 

(n − 1)(n − 2) 
to form a triangle. Compute the mean vertex degree and clustering coefficient for 
this network model. 
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2. Centrality in Infinite Graphs.

In this problem, you will demonstrate an example that shows that eigenvector cen-
trality can be very sensitive to minimal changes in a network. The problem is broken 
into different components that finally lead to the conclusion. 

Part I 

First, consider the infinite ring network as in Figure 1. 

Figure 1: 

Assume that xi is the eigenvector centrality measure of node i. 

(a) (1pt) Show that the xi’s are computed by finding the largest λ for which there
exists a set of xi for i = 0, 1, 2, . . . such that:

λxi = xi−1 + xi+1, ∀i = 1, 2, . . . 

Note that we can always normalize the eigenvector centrality by dividing xi by 
x0 for all i, so that x0 = 1. 

(b) (2pt) Show that all the nodes have equal ranking. (Hint: Show that the is
xi = 1 for all i. This should be a straightforward conclusion and can be proved
by inspection.).
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Part II 

Next, as shown in Figure 2, we add an edge between two nodes so that the infinite 
ring is divided into two symmetric halves. We will examine the eigenvector centrality 
of this new network. By symmetry, we only need to find the eigenvector centrality 

Figure 2: 

measures indexed by x0, x1, x2, . . . . As before, we always normalize it so that x0 = 1. 

(c) (1pt) Write down the system of equations which characterize the eigenvalue 
centrality. 

(d) (2pt) Show that the eigenvector centrality must satisfy: 

x0 ≥ x1 ≥ x2 ≥ · · · ≥ 0 

(Hint: start with an initial guess xi = 1 for all i, and try to iteratively compute 
the eigenvector. You can prove the inequalities by induction.) 
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(e) (1pt) Show that the largest eigenvalue λ must satisfy:

2 ≤ λ ≤ 3 

(Hint: observe the system of equations you wrote down for (c).) 

(f) (3pt) We have shown in Part (e) that xn is positive and decreasing in n. Please
prove that limn→∞ xn = 0.
(Hint: consider writing the system of equations in Q2 into the form of a linear
dynamical system with state y[n] given by:� � 

y[n] = 
xn+1 , 
xn

write down the recursive equation y[n + 1] = Ay[n] that describes the evolu-
tion of the linear dynamics, and think about the equilibrium.) Now you have 
demonstrated that by adding a single edge one can change the relative centrality 
measure 

x
x
n 

0 drastically. 
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3. Synchronization. 

An oscillator is a simple dynamical system that can be modeled by a first order 
differential equation. A network of n oscillators can be modeled by a system of 
differential equations of the form: Xdθi 

= ω + Aij g(θi − θj ), i = 1, . . . , n 
dt 

i 

where θi represents the phase angle and is the state of the oscillator on vertex i, ω is 
a constant, and the function g(x) has g(0) = 0 and respects the rotational symmetry 
of the phases, meaning that g(x + 2π) = g(x) for all x. 

(a) (2pt) Characterize all solutions of the form θi(t) = ait+bi to the set of dynamical 
equations, i.e., find ai, bi, i = 1, . . . , n. 

(b) (3pt) Consider a small perturbation away from the state θi = ωt + �i and show 
that the vector � = (�1, �2, . . . , ) satisfies 

d� 0 
= g (0)L� 

dt 

Your solution should specify L in terms of [Aij ], the adjacency matrix of an 
undirected graph. (Hint: Using the Taylor series approximation of g(·) around 

0 00 
x0, i.e., g(x) = g(x0) + (x − x0)g (x0) + (x−

2 
x0)2 

g (x0) + . . .. maybe helpful) 
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(c) (2pt) Show that L = MT M where M is the incidence matrix, i.e., the rows 
correspond to the edges and columns correspond to the vertices. Therefore, for 
every edge e = (i, j) between i, j where i < j we have that 

Mev = −1 if v = i 

Mev = 1 if v = j 

Mev = 0 otherwise 

(d) (2pt) Argue that L is a symmetric matrix and that for any vector x we have that 
xT Lx ≥ 0. Conclude from this that all the eigenvalues of L are non–negative. 
(Hint: Use the fact that all eigenvalues, λ, of a symmetric matrix, P , are of the 
form 

vT Pv 
= λ 

Tv v 
where v is the corresponding eigenvector.) 

(e) (1pt) For what values of g 
0 
(0) is the system stable to small perturbations around 

the origin? 
(Hint: You can use a Lyapunov argument with quadratic Lyapunov function 
V (x) = xT x to examine stability of the linearized system in part (b)). 
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