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Problem 1
a. For the statistic to be unbiased we must have
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So the statistic will be unbiased if and only if
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b. Given that all of the Xi are independent, the variance of the sta-
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The Lagrangian of this optimization problem is

L = �2
nX
i=1

c2i � �
 

nX
i=1

ci � 1
!

1

TA: Tonja Bowen Bishop



2 14.30 PROBLEM SET 7 SUGGESTED ANSWERS

And we have the �rst-order conditions
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This implies that all of the ci are the same, that is c1 = c2 = ::: = cn = c.
We can then solve for this common value c by substituting back into the

constraint
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c = 1, which implies that c = 1
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Problem 2
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So X is an unbiased estimator of �.
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c. To determine whether the sample mean is a consistent estimator,
we need to see whether the MSE goes to zero as n approaches in�nity.

lim
n!1

MSE
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Thus (assuming a positive variance) the sample mean is not a consistent
estimator of the population mean unless � = 0.

Problem 3
a. We know that the �rst moment of Z is

E (Z) =

Z 1

0
zf (z) dz

=
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0
z�e��zdz

=
1
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Then, we calculate our method of moments estimator by setting E (Z) =
Z and solving for �.
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b�MM =
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=
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b. The exponential pdf is f (z) = �e��z. Thus, the likelihood function
for � is

L(�; z) =
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Then, the log likelihood function is

lnL(�; z) = ln
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Di¤erentiating the function with respect to � and set it to 0;
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So we �nd that the MLE estimator is the same as the MM estimator:b�MLE =
nPn
i=1 zi

=
1

Z

c. Using the invariance property, the MLE for
p
� is simplycp

�MLE =

qb�MLE =
1p
Z
=

r
nPn
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:

d. We know that b�MLE will be consistent because all MLE estimators
are consistent. But is it unbiased? A direct calculation of E(b�MLE) =

E
�
1
Z

�
is untractable (note that E

�
1
Z

�
6= 1

E(Z)
, in general). But we can

use Jensens�s inequality to help us out, which tells us that for any random
variable X, if g (x) is a convex function, then

E(g (X)) � g (E (X))
with a strict inequality if g (x) is strictly convex. Thus, using Z as our

random variable and the strictly convex function g
�
Z
�
= 1

Z
, we have

E

�
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>

1

E
�
Z
� = 1
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and we know that our estimator is biased.

Note that if we had instead used the version of the exponetial pdf that
replaces � with 1

� , and estimated the parameter � by either method, we

would have found b� = Z, which is both unbiased (since E (Z) = 1
� = �) and

consistent (by the law of large numbers).

Problem 4
a. Bias

�b�1;n� = E
�b�1;n� � � = E [Xn] � � = � � � = 0 so b�1;n is

unbiased for every n.

Bias
�b�2;n� = E �b�2;n�� � = E

"
1
n+1

nX
i=1

Xi

#
� � = 1

n+1

nX
i=1

E [Xi]� � =

n
n+1�� � =

��
n+1 6= 0 so b�2;n is biased for for every n.

b. limn!1 P
���b�1;n � ��� < "� = limn!1 P (jXn � �j < ") = P (�� " < Xn < �+ ") =

P (Xn � �+ ")�P (Xn � �� ") (because the R.V. are continuous)= F (�+ ")�
F (�� ") 6= 0 for some " > 0. Thus b�1;n is not consistent.
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limn!1
�
MSE

�b�2;n�� = limn!1 �V ar �b�2;n��+limn!1 �Bias �b�2;n��2 =
0; proving that b�2;n is consistent.
c. An unbiased estimator is not necessarily consistent; a consistent

estimator is not necessarily unbiased.

Problem 5
a. MM: Since we know that �l = 0, we only need to use the �rst

moment equation:

E(X) =
0 + �h
2

;

Then, the MM estimator is obtained by solvingb�h
2

=
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b�h =
2

n
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MLE: The uniform pdf is

f(x) =
1

�h � �l
=
1

�h

and the likelihood function and log likelihood functions are given (respec-
tively) by

L(0; �h;x1; x2; :::; xn) =

�
1

�h

�n
lnL(0; �h;x) = �n ln �h

In order to maximize the log likelihood function above, we need to
minimize �h subject to the constraint xi � �h 8 xi.

Then, it must be that b�h = max(xi)
b. The �rst two moments are
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2
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�2l + �

2
h + �l�h
3

:

Then, the MM estimators are obtained by solvingb�l + b�h
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They are given by

b�l = X �
q
3(X2 �X2

);

b�h = X +

q
3(X2 �X2

):

c. We begin with the MM estimator for part a:

E
�b�h� = E �2X� = 2b�h

2
= b�h

So this estimator is unbiased. Then we consider the variance.
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�b�h� = V ar �2X� = 4
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2
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�
Because the bias is zero and the variance approaches zero as n gets large,

the MSE also approaches zero, and the estimator is consistent.

For the MLE estimator, we use the fact (shown in problem 6) that, for
this estimator, f (x) = nxn�1

�n . Then we can see that the MLE estimator is
biased:

E
�b�h� = Z �h

0

nxn

�nh
dx =

n

n+ 1
�h

However, as n gets large, n
n+1 �! 1, so the bias approaches zero, and we

know that in general, MLE estimators are consistent.

For the MM estimators in part b, �nding the expected value is not par-
ticularly tractable nor particularly interesting, so I will retract this portion
of the question.

Problem 6
Note that for a U [0; �] distribution, f (x) = 1

� , F (x) =
x
� , E (X) =

�
2 ,

and V ar (X) = �2

12 .
a. It will be important that the sample draws are independent (and

identical). Then,
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�
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b. In part a, we found the cdf of X(n), so the pdf is just the derivaive
of this:

f(n) (x) =
d

dx
F(n) (x)

=
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dx
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�n
=
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c. We want to choose constants k1; k2; and k3 such that our estimators
are unbiased. For the �rst estimator,
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2
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2
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And for the third estimator

E
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0
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d. Now we calculate the variances of our estimators, using the con-
stants that we found in part c.
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Thus, whenever n > 1,
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