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17 Definitions 

17.1 Random Sample 

Let X1, ..., Xn be mutually independent RVs such that fXi (x) = fXj (x) ∀ i =� j. Denote 

fXi (x) = f(x). Then, the collection X1, ..., Xn is called a random sample of size n from the 

population f(x). 

Examples: 

– Rolling a die n times. 

– Selecting 10 MIT students and measuring their height. 

• Sampling with and without replacement: Sampling from a large population (“nearly 

independent”). 

• Alternatively, this collection (or sampling), X1, ..., Xn, is also called independent and 

identically distributed random variables with pmf/pdf f(x), or iid sample for short. 

• Note that the difference between X and x still holds (we continue to deal with random 

variables). 

∗Caution: These notes are not necessarily self-explanatory notes. They are to be used as a complement 

to (and not as a substitute for) the lectures. 

1 



Herman Bennett	 LN7—MIT 14.30 Spring 06


17.2 Statistic 

Let the RVs X1, X2, ..., Xn be a random sample of size n from the population f(x). Then, 

any real-valued function T = r(X1, X2, ..., Xn) is called a statistic. 

• Remember that X1, X2, ..., Xn are RVs, and therefore T is a RV too, which can take any 

real value t with pmf/pdf fT (t). 

17.3 Sample Mean 

¯The sample mean, denoted by Xn, is a statistic defined as the arithmetic average of the 

values in a random sample of size n. 

n

X̄n = 
X1 + X2 + ... + Xn 

=
1 � 

Xi (52) 
n n 

i=1 

17.4 Sample Variance 

The sample variance, denoted by Sn
2, is a statistic defined as: 

n

Sn 
2 = 

n − 
1

1 

�
(Xi − X̄)2	 (53) 

i=1 

1The sample standard deviation is the statistic defined by Sn = 
�

Sn
2 . 

•	 Remember, the observed value of the statistic is denoted by lowercase letters. So, 
¯¯ 2 , and s denote observed values of the RVs X,S2 , and S.x, s

1The sample variance and the sample standard deviation are sometimes denoted by σ̂2 and σ̂, respec

tively. 
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18 Important Properties of the Sample Mean Distri


bution and the Sample Variance Distribution 

18.1 Mean and Variance of X̄ and S2 

Let X1, ..., Xn be a random sample of size n from a population f(x) with mean µ (finite) 

and variance σ2 (finite). Then, 

σ2 

E(X̄) = µ, E(S2) = σ2 , V ar(X̄) = 
n

, and V arn→∞(S2) → 0. (54) 

Standard Error: 
�

V ar
�
X̄

�• 

Example 18.1. Show the first 3 statements of (54). 
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18.2	 The Special Case of a Random Sample from a Normal Pop

ulation 

Let X1, ..., Xn be a random sample of size n from a N(µ, σ2) population. Then, 

a. X̄ and S2 are independent random variables.	 (55) 

b. X̄ has a N(µ, σ2/n) distribution.	 (56) 

c. 
(n − 1)S2 

has a χ2
(n−1) distribution.	 (57)

σ2 

Example 18.2. Show (56). 

18.3	 Limiting Results (n →∞) 

These concepts are extensively used in econometrics. 

18.3.1	 (Weak) Law of Large Numbers 

Let X1, ..., Xn be independent and identically distributed (iid) random variables with 
¯ 1E(Xi) =	µ (finite) and Var(Xi) = σ2 (finite). Define Xn = 

n 

�n
i=1 Xi. Then, for every 

ε > 0, 
¯lim P ( < ε) = 1 . (58) 

n→∞ 
|Xn − µ| 

This condition is denoted, 

X̄n
p 

(X̄n converges in probability to µ.) (59)−→ µ 
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Example 18.3. Prove (58) using Chebyshev’s inequality. Note that S2 p 
can be −→ σ2 

proved in a similar way. 

18.3.2 Central Limit Theorem (CLT) 

Let X1, ..., Xn be independent and identically distributed (iid) random variables with 

E(Xi) = µ (finite) and Var(Xi) = σ2 (finite). Define X̄n = 
n 
1 �n

i=1 Xi. Then, for any 

value x ∈ (−∞, ∞), 

x 

lim P 

�√
n(X̄

σ 
n − µ) 

< x 

� 

= 
� 

√1

2π
e−x2/2 = Φ(x) (60) 

n→∞ −∞ 

Where Φ( ) is the cdf of a standard normal. 

In words...From (56) we know that if the Xis are normally distributed, the sample 
¯mean statistic, Xn, will also be normally distributed. (60) says that if n → ∞, the func

tion of the sample mean statistic, 
√

n(X̄
σ 
n−µ) , will be normally distributed regardless of the 

distribution of the Xis. 

In practice(1)...If n is sufficiently large, we can assume the distribution of a function of 

X̄n, 
√

n(X̄
σ 
n−µ) , without knowing the underlining distribution of the random sample fXi (x). 

[Very powerful result!] 
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In practice(2)...Define Z = 
√

n(X̄
σ 
n−µ) . If n is sufficiently large, then 

�√
n(x̄n − µ)

� �√
n(x̄n − µ)

�
FZ 

σ 
≈ Φ 

σ 
(61) 

⇓ 

¯
√

n(X̄n − µ) ∼ 
a 

N(0, 1) or Xn ∼ 
a 

N(µ, σ2/n) (a : for approximately) (62)
σ 

...regardless of the pmf/pdf fXi (x) ! 

• The larger the value of n is, the better the approximation. But, how much is “sufficiently 

large”? There is no straight forward rule. It will depend on the underlying distribution 

fXi (x). The less bell-shaped fXi (x) is, the larger the n required. Having said this, some 

authors suggest the following rule of thumb: n ≥ 30. 

• Magnifying glass (see simulations). 

Example 18.4. An astronomer is interested in measuring the distance from his observatory 

to a distant star (in light years). Due to changing atmospheric conditions and measuring 

errors, each time a measurement is made it will not yield the exact distance. As a result, the 

astronomer plans to take several measurements and then use the average as his estimated 

distance. He believes that measurement values are iid with mean d (the actual distance) 

and variance 4 (light years). How many measurements does he need to perform to be 

reasonably sure that his estimated distance is accurate within ±0.5 light years? 
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