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14.382 L12. TREATMENT EFFECTS 

´VICTOR CHERNOZHUKOV AND IV ́ ANDEZ-VAL AN FERN 

1. Potential Outcomes Framework and Average Treatment Effects 

Here we have two latent variables Y1 and Y0, which are the counterfactual outcomes 
for an observational unit when the unit is subjected to treatment and no treatment, in 
an idealized experiment [17, 10]. In economic context, the treatment can be a training 
program or a policy intervention. These quantities are “counterfactual”, because they can’t 
be simultaneously observed, unless we have replicas of the observational units that are 
simultaneously subjected to di�erent treatments. 

The treatment e�ect is 
Y1 − Y0. 

It is generally unrealistic to uncover the treatment e�ect, but we can hope to estimate mo-
ments of Y1 − Y0 such as the average treatment e�ect (ATE):1 

δ = E(Y1 − Y0) = EY1 − EY0. 

Let D denote the treatment indicator, which takes a value of one if the observational 
unit participated in the treatment and zero otherwise. The observed outcome is 

Y = DY1 + (1 − D)Y0. 

Hence we observe Y = Y1 if D = 1 and Y = Y0 if D = 0. For example, we observe 
the wage outcome Y1 after completion of a training program for a given person only if 
this person has completed the program D = 1; we do not observe the wage outcome Y1 

without completion of the training program, i.e. if D = 0. 

So we can identify the quantities 

E[Y | D = 1] = E[Y1 | D = 1] and E[Y | D = 0] = E[Y0 | D = 0]. 

The di�erence of the two quantities gives us the average predictive e�ect (APE) of treat-
ment status on the outcome: 

π = E[Y | D = 1] − E[Y | D = 0]. 

1We consider other moments such as the average treatment e�ect on the treated (ATT) in the appendix. 
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It measures the association of the treatment status with the outcome, and this quantity π 
in general does not agree with the ATE δ: 

δ 6= π. 

This phenomenon is generally caused by a selection problem. 

Example 1.(Selection E�ects in Observational Data) Suppose we want to study the im-
pact of smoking marijuana on life longevity. Suppose that smoking marijuana has no 
causal/treatment e�ect on life longevity: 

Y = Y0 = Y1, so that δ = EY1 − EY0 = 0. 

However, the observed smoking behavior, D, results not from an experimental study, but 
from a behavior in which smoking is associated with poor health (certain types of cancers, 
for example), which causes shorter life expectancy. In this case 

π = E[Y | D = 1] − E[Y | D = 0] < 0 = δ. � 

The problem with the observational study like the one in this contrived example is that 
the ”treatment status” D is determined by the individual behavior which depends on the 
potential outcomes, causing selection bias, namely π < δ. Arguably, the cleanest way to 
break the dependency is through random assignment. 

Assumption 1 (Random Assignment/Exogeneity). Suppose that the treatment status is ran-
domly assigned, namely D is statistically independent of the potential outcomes (Yd)d∈{0,1}, which 
is denoted as 

D ⊥⊥ (Y0, Y1), 

and 0 < P(D = 1) < 1. 

Theorem 1 (Randomization Removes Selection Bias). Under Assumption 1, 
E[Y | D = d] = E[Yd | D = d] = E[Yd], for d ∈ {0, 1}. 

Hence 
π = EY1 − EY0 = δ. 

Please note that the theorem is self-contained, since the proof is contained in the state-
ment. 

Hence randomized experiments, commonly called Randomized Control Trials (RCTs), 
in which treatment is randomly assigned, generate a simple, practical mechanism through 
which we can measure the impact of a treatment on average potential outcomes. 
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Example 2.(No Selection E�ects in Experimental Data) Suppose instead that in the pre-
vious example we worked with data where smoking was generated by random assign-
ment, then we would have the agreement between average predictive and treatment ef-
fects: π = δ. Of course, it is diÿcult to imagine an RCT where smoking or non-smoking 
marijuana can be forced onto participants of the study. � 

Scientists most often have to rely on observational studies to try to learn causal/treatment 
e�ects – we’ve been developing tools for this the entire course.2 One commonly used as-
sumption to eliminate selection e�ects is the following. 

Assumption 2 (Ignorability and Overlap). (a) Ignorability. Suppose that the treatment status 
D is independent of potential outcomes (Yd)d∈{0,1} conditional on a set of covariates X , that is 

D ⊥⊥ (Y0, Y1) | X. 

(b) Overlap. Suppose that the propensity score p(X) := P(D = 1|X), which is the probability of 
receiving treatment given X , is non-degenerate: 

P(0 < p(X) < 1) = 1. 

Note that the conventional name used in econometrics for ignorability is conditional exo-
geneity or conditional independence assumption. Since we emphasize potential outcomes as 
a framework to think of causality here, we use the naming conventions of this literature. 

Assumption 2 means that the treatment is as good as randomly assigned conditional 
on X . This assumption underlies most of the regression strategies for identifying the 
causal/treatment e�ects from observational data. 

Theorem 2 (Conditioning on X Removes Selection Bias). Under Assumption 2, 
E[Y | D = d, X] = E[Yd | D = d, X] = E[Yd | X]. 

Hence the Conditional Average Predictive E�ect (CAPE), 
π(X) = E[Y | D = 1, X] − E[Y | D = 0, X] 

is equal to the Conditional Average Treatment E�ect (CATE), 
δ(X) = E[Y1 | X] − E[Y0 | X]. 

Hence APE and ATE also agree: 
δ = Eδ(X) = Eπ(X) = π 

2We have used structural equation models and made various assumptions such as conditional exogeneity 
and other conditional moment restrictions to identify the structural parameters from the statistical parameters 
such as predictive e�ects. 
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Please note that the theorem is self-contained, since the proof is contained in the state-
ment. The overlap assumption makes it possible to condition on the events {D = 0, X}
and {D = 1, X}. 

Example 3.(Removing Selection Bias Conditional on Controls) In the context of smok-
ing, it might be plausible to think of the smoking behavior as independent of potential 
outcomes, once we condition on observed characteristics, such as medical records, or de-
mographic characteristics. � 

One implication of this assumption deals with the linear model 
Yd = dα + X 0β + �d, E�dX = 0, (1.1) 

where X contains an intercept. Under Assumption 2, D is independent of �1 and �0 

and hence 
� = �1D + �0(1 − D) 

obeys 
E�D = E�1D = 0 

so that 
Y = αD + X 0β + �, E�(D, X) = 0, 

implying that we can identify δ from the coeÿcient α of this model: 
α = δ. 

Of course the assumption of linearity with respect to d in (1.1) is restrictive, but conve-
nient. In particular, we can use the partialling out methods for estimating α, including 
cases where β is high-dimensional. 

Without the linearity assumption (1.1), the projection parameter α can be shown to es-
timate the weighted average of CATEs, 

α = Ew(X)δ(X). 

Another approach is to drop the linear model and consider the interactive model, 
Yd = dX 0α + X 0β + �d, E�d | X = 0 (1.2) 

Under ignorability �d’s are independent of D and we have that 
X 0α = EY1 | X − EY0 | X 

and δ is identifed as the average of X 0α: 
EX 0α = δ. 

http:nient.In


L12 5 

The fact that conditioning on the right set of controls removes the bias has long been rec-
ognized by researchers employing regression methods. Rosenbaum and Rubin [INSERT 
REF] made the much more subtle point that conditioning on the propensity score suÿces 
to remove the selection bias. 

We defned above the propensity score as p(X) := P(D = 1|X), which is the probability 
of receiving treatment given X . Under the previous assumption we can represent the 
treatment selection rule statistically as: 

D = 1{U ≤ p(X)}, U | X ∼ U(0, 1), 

and 
U ⊥⊥ (Y0, Y1) | X. 

Note that 

E[Y | D = 1, p(X)] = E[Y1 | U ≤ p(X), p(X)] = E[Y1 | p(X)], 

and similarly 

E[Y | D = 0, p(X)] = E[Y0 | U ≥ p(X), p(X)] = E[Y0 | p(X)]. 

Hence we obtain the theorem of Rosenbaum and Rubin [16]. 

Theorem 3 (Conditioning on The Propensity Score Removes Selection Bias). Under 
Assumption 2, 

E[Y | D = d, p(X)] = E[Yd | p(X)]. 
Hence the Conditional (on the propensity score) Average Predictive E�ect, 

π(X) = E[Y | D = 1, p(X)] − E[Y | D = 0, p(X)] 

is equal to the Conditional (on the propensity score) Average Treatment E�ect (CATE), 
δ(X) = E[Y1 | p(X)] − E[Y0 | p(X)]. 

Hence APE and ATE also agree: 
δ = Eδ(X) = Eπ(X) = π. 

Note that the propensity score is the minimal “suÿcient” statistic in the sense that con-
ditioning on the propensity score generally removes the bias under ignorability. This is 
a useful strategy when X is high dimensional and p(X) is available or can be approxi-
mated accurately, as happens in the recent work [2]. In this case, we can simply use p(X) 
as control. 
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Another critical point, known as the Horvitz-Thompson method, uses propensity score 
reweighting to recover averages of potential outcomes. Indeed, 

E[DY/p(X)] = E[DY1/p(X)] = E[p(X)E[Y1 | X]/p(X)] = E[Y1] 

and similarly 
E[(1 − D)Y/(1 − p(X))] = E[Y0] 

Hence we obtain the following result. 

Theorem 4 (Propensity Score Reweighting Removes Bias). Under Assumption 2, 
γ = E[DY/p(X)] − E[(1 − D)Y/(1 − p(X))] = δ. 

2. Estimation and Inference on ATE 

Given a strategy outlined above we can proceed with GMM estimation and inference 
using the methods we have developed previously. Defne 

µd(X) = E[Y | D = d, X], pd(X) = P(D = d | X). 
Then denoting θd = EYd we have 

θ = (θd)d∈{0,1}. 

The identifcation argument of Theorem 2 leads to the regression-based moment condi-
tions: 

E[µd(X)] − θd = 0, d ∈ {0, 1}, 
(where µd(X) can also be replaced for E[Y | D = d, p(X)] by Theorem 3)[CHECK]. Given 
the parameteriziation 

µd(X) = µd(X, βd), 

we can proceed with GMM approach to estimating θ using this moment equation ap-
proach, stacking the score 

g1(Z, θ, β) = (µd(X, βd) − θd)d∈{0,1}

with the score that corresponds to the estimation of β = (β0
0 , β1

0 )0 [7]. Such an approach is 
well-suited if β is low or moderately-low dimensional. 

The identifcation argument of Theorem 4 leads to the propensity-score based moment 
conditions, 

E[1(D = d)Y/pd(X)] − θd = 0, 

Given the parameteriziation 
pd(X) = pd(X, ̀ d), 
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where we can use the binary response models in L6, we can proceed with GMM approach 
to estimating θ using this moment equation approach, stacking the score 

g2(Z, θ, ̀ ) = (1(D = d)Y/pd(X, ̀ d) − θd)d∈{0,1} 

with the score that corresponds to the estimation of ` = (`00 , `10 )0 [8]. Such an approach is 
well-suited if ` is low or moderately-low dimensional. 

The above strategies are not well-behaved when the nuisance parameters β and ` are 
high-dimensional and we have to employ penalization/regularization to estimate them. 
Instead, we shall rely on the following moment condition that identifes θd: 

E[1(D = d)(Y − µd(X))/pd(X) + µd(X)] − θd = 0. 

Using this moment condition for identifcation and inference is called the “doubly-robust 
approach” (Robins and Rotnizky, [15]).3 Given the previous parameterizations for µd(X) 
and pd(X), this takes us to the score function: 

g(Z, θ, η) = (1(D = d)(Y − µd(X, βd))/pd(X, ̀ d) + µd(X, βd) − θd)d∈{0,1}, 

where 
η = (β, ̀ ). 

This score can be derived by “optimally combining the scores” g1(Z, θ, β) and g2(Z, θ, ̀ ) 
using the GMM framework (or its extensions), and using the explicit calculation of the 
optimal weighting matrix. 

The score function g has the following orthogonality/local-robustness property: 
∂ηEg(Z, θ0, η) |η=η0 = 0, 

where η0 and θ0 denote the true values of the parameters. This makes it very robust, 
in particular, we can use penalized estimators of η in the high-dimensional settings. 

Because of this property, errors occuring in the estimation of nuisance parameters wash 
out, and we don’t have the frst order impact on the asymptotic behavior of the GMM 
estimator. Specifcally the leading term in the linear approximation to the GMM estimator 
obeys: 

n nX X1 1 
g(Z, θ0, η̂) = g(Z, θ0, η0) + oP (1) 

n1/2 n1/2 
i=1 i=1 

This is the reason why in this case we do not need to stack g(Z, θ0, η) with the scores cor-
responding to the estimation of η in the GMM approach. We can estimate θ0 and η0 sepa-
rately. 

3The naming refers to the fact that even if either µd or pd are misspecifed (but not both), then θd is still 
correctly recovered. 
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Note that it is easy to show that the scores g1 and g2 do not have the orthogonality/local-
robustness property, making them unsuitable for uses in very high-dimensional settings. 

3. Distribution and Quantile Treatment Effects 

The marginal distributions of the potential outcomes, FY0 and FY1 , are identifed under 
either Assumption 1 or 2. This can be seen directly from Theorems 1–4 replacing Y by the 
indicators 1(Y ≤ y) with y ∈ Y for a fnite set Y ⊂ R. Thus, under Assumption 2, by the 
same argument as in Theorem 2 

FYd (y) = E[1(Yd ≤ y)] = E{E[1(Y ≤ y) | X, D = d]}, d ∈ {0, 1}, 
or, by the same argument as in Theorem 4 

FYd (y) = E[1(Yd ≤ y)] = E[1(D = d)1(Y ≤ y)/pd(X)], d ∈ {0, 1}. 
The τ -quantiles of the potential outcomes are the (left)-inverse of the distributions at τ : 

QYd (τ) = F ←(τ) = inf{y ∈ Y : FYd (y) ≤ τ}, d ∈ {0, 1}, τ ∈ (0, 1).Yd 

The di�erence between the τ -quantiles of the potential outcomes Y1 and Y0 yields the τ -
quantile treatment e�ect (τ -QTE) 

δτ = QY1 (τ) − QY0 (τ ), τ ∈ (0, 1). 

In the training program example, δ1/2 measures the di�erence in the median wage between 
the situation where everyone participates in the program and the situation where none 
participates in the program. Looking at the QTE function τ 7→ δτ we can determine if the 
treatment e�ect is heterogenous across the distribution. 

We can make inference on the QTE function using the generic methods of L7. These 
methods convert estimates and confdence bands for distributions functions into estimates 
and confdence bands for quantile and quantile e�ects function. To estimate the distribu-
tions, we use a GMM approach similar to the previous section. We focus here on the 
doubly-robust approach. Defne 

pd(X) := P(D = d | X), and µd,y(X) := E[1(Y ≤ y) | D = d, X], d ∈ {0, 1}, y ∈ Y. 
Let θd,y := FYd (y). The moment conditions of the doubly robust approach are 

E[1(D = d)(1(Y ≤ y) − µd,y(X))/pd(X) + µd,y(X)] − θd,y = 0, d ∈ {0, 1}, y ∈ Y. 
Given the parametrizations 

pd(X) = pd(X, ̀ d), µd,y = µd,y(X, βd,y), 

the moment function for the GMM approach is 
g(Z, θ, η) = [1(D = d)(1(Y ≤ y) − µd,y(X, βd,y))/pd(X, ̀ d)+ µd,y(X, βd,y) − θd,y]d∈{0,1},y∈Y , 

where 
θ = [(θ0,y)y∈Y , (θ1,y)y∈Y ], η = [(β0,y)y∈Y , (β1,y)y∈Y , `0, `1]. 

http:function.To
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4. Treatment Effects with Endogeneity 

In many observational studies the ignorability assumption is not plausible. Even in 
RCTs the observational units might decide not to comply with their treatment assignments 
for reasons related to potential outcomes. For example, individuals randomly assignment 
to a training program might decide not to participate if they expect that the training is 
not benefcial to them. In these cases we can still identify average treatment e�ects in 
the presence of a variable related to the treatment that is randomly assigned or randomly 
assigned conditional on covariates. This variable is called the instrument, Z. We focus on 
the leading case of binary Z. This covers the leading case where Z is a random o�er to 
participate in the treatment. Without ignorability of the treatment, the ATE is generally 
not identifed. We can still identify the average e�ect for a subpopulation under some 
conditions on the instrument. To state these conditions it is useful to introduce the latent 
variables D0 and D1, which correspond to the counterfactual treatment assignments when 
the unit is subjected to o�er and no o�er of treatment. 

Assumption 3 (LATE). (a) Ignorability. Suppose that the instrument Z is independent of poten-
tial outcomes (Yd)d∈{0,1} and potential treatments (Dz)z∈{0,1} conditional on a set of covariates 
X , that is 

Z ⊥⊥ (Y0, Y1, D0, D1) | X. 

(b) Overlap. Suppose that the propensity score p(X) := P(Z = 1|X), which is the probability of 
receiving the o�er of treatment given X , is non-degenerate: 

P(0 < p(X) < 1) = 1. 

(c) Monotonicity: 
P(D1 ≥ D0) = 1. 

(d) First stage: 
P(D1 > D0) > 0. 

Part (a) and (b) are conditional exogeneity and overlap conditions on the instrument 
similar to Assumption 2. Part (c) imposes that the instrument a�ects the treatment in the 
same direction for all the units. In other words, it rules out defers, units that take the 
treatments only when they do not receive the o�er. Part (d) is a relevance condition that 
guarantees a positive mass of compliers, units that comply with the treatment o�er Z be-
cause D1 > D0. Assumption 3 covers the case where Z is randomly assigned by setting 
X = 1. 

Under Assumption 3, the average treatment e�ect is identifed only for the compliers. 
These are the units for which D1 > D0, i.e. the treatment status can be manipulated with 
the instrument. The ATE for the compliers is called the local average treatment e�ect or LATE: 

δc := E[Y1 − Y0 | D1 > D0]. 
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It is local in that it is the ATE for the subpopulation of compliers, which is not observable. 
[9] and [1] showed that the LATE can be expressed as the ratio of the average treatment 
e�ect of Z on Y to the average treatment e�ect of Z on D. Since the instrument is ignorable 
with respect to the outcome and treatment, by Theorem 2 the LATE is identifed by 

E[E(Y | Z = 1, X) − E(Y | Z = 0, X)]
δc = . 

E[E(D | Z = 1, X) − E(D | Z = 0, X)] 

In the absence of covariates, the sample analog of the previous expression is the Wald 
estimator [18], which is the ratio of the coeÿcients of Z in the reduced form regression of 
Y on Z to the frst stage regression of D on Z, 

δ̂c En(Y | Z = 1) − En(Y | Z = 0) 
= .wald En(D | Z = 1) − En(D | Z = 0) 

The following result shows that the mass of compliers, averages of potential outcomes 
for compliers and LATE can all be expressed as functions of potential outcomes and po-
tential treatments defned with respect to the instrument. We use this characterization to 
construct estimators based on the GMM approaches described in Section 2. 

Theorem 5 (LATE). Under Assumption 3, (a) the mass of compliers is the ATE of the potential 
assignments with respect to the instrument, 

P(D1 > D0) = E(D1 − D0). 

(b) The averages of the potential outcomes for the compliers can be expressed as a ratio of two 
ATEs with respect to the instrument, 

E[1(D1 = d)Yd − 1(D0 = d)Yd]
E(Yd | D1 > D0) = , d ∈ {0, 1}. 

E[1(D1 = d) − 1(D0 = d)] 

(c) Let Y ∗ := DzY1 + (1 − Dz)Y0, z ∈ {0, 1}, be potential outcomes defned with respect z 
to the instrument Z. The LATE can be expressed as a ratio of two ATEs with respect to the 
instrument, 

E(Y ∗ − Y0 
∗)1δc = . 

E(D1 − D0) 
(d) Hence, the mass of compliers, the average of the potential outcomes for the compliers, and 
the LATE are identifed. 

Part (a) follows directly from the monotonicity assumption. For part (b), if d = 1 

E[1(D1 = 1)Y1 − 1(D0 = 1)Y1] = E(Y1 | D1 > D0)E[1(D1 = 1) − 1(D0 = 1)], 

by monotonicity, where E[1(D1 = 1) − 1(D0 = 1)] 6 0 by the frst stage condition. The = 
case d = 0 follows similarly. Part (c) follows from part (b) since 

δc = E(Y1 | D1 > D0) − E(Y0 | D1 > D0), 

http:instrument.We
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and the defnition of Y ∗ . Part (d) then follows byz 

[1(D0 = d), 1(D1 = d), 1(D0 = d)Yd, 1(D1 = d)Yd, Yd 
∗ ]d∈{0,1} ⊥⊥ Z | X, 

from the conditional ignorability of the instrument, and by the support condition. 

Theorem 5 shows that the LATE is identifed by a ratio of ATEs with respect to the 
instrument. We can therefore use any of the GMM approaches described in Section 2 
to estimate and make inference on the LATE. We briefy discuss the approach based on 
doubly-robust moment functions. Defne 
pz(X) := P(Z = z | X), µz(X) := E[Y | Z = z, X], qz(X) := E(D | Z = z, X), z ∈ {0, 1}. 
Let αz = E[Y ∗], and νz = E[Dz]. With this notationz 

α1 − α0
δc = ,

ν1 − ν0 

where αz and νz are averages of potential outcomes defned in terms of the instrument. 
The moment conditions of the doubly robust approach for these averages are 

E[1(Z = z)(Y − µz(X))/pz(X) + µz(X)] − αz = 0, 

E[1(Z = z)(D − qz(X))/pz(X) + qz(X)] − νz = 0. 

Given the parametrizations 
pz(X) = pz(X, ̀ d), µz = µz(X, βz), qz(X) = qz(X, λz), 

the moment function for the GMM approach is � � 
1(Z = z)(Y − µz(X, βz))/pz(X, ̀ z) + µz(X, βz) − αz g(Z, θ, η) = 
1(Z = z)(D − qz(X, λz))/pz(X.`z) + qz(X, λz) − νz z∈{0,1}

where 
θ = [αz, νz]z∈{0,1}, η = [βz, λz, `z]z∈{0,1}. 

We can develop a similar GMM approach to estimate and make inference on the aver-
ages of the potential outcomes for compliers, E(Yd | Y1 > Y0). Defne 

pz(X) := P(Z = z | X), µz,d(X) := E[1(D = d)Y | Z = z, X], 

qz,d(X) := P(D = d | Z = z, X), d ∈ {0, 1}, z ∈ {0, 1}. 
Let αz,d = E[1(Dz = d)Yd], and νz,d = E[1(Dz = d)]. With this notation 

α1,d − α0,d
E(Yd | D1 > D0) = ,

ν1,d − ν0,d 

where αd,z and νz,d are averages of potential outcomes defned in terms of the instrument 
and assignment. The moment conditions of the doubly robust approach for these averages 
are 

E[1(Z = z)(1(D = d)Y − µz,d(X))/pz(X) + µz,d(X)] − αz,d = 0, 

E[1(Z = z)(1(D = d) − qz,d(X))/pz(X) + qz,d(X)] − νz,d = 0. 

http:ontheLATE.We
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Given the parametrizations 
pz(X) = pz(X, ̀ z), µz,d = µz,d(X, βz,d), qz,d(X) = qz,d(X, λz,d), 

the moment function for the GMM approach is � � 
1(Z = z)(1(D = d)Y − µz,d(X, βz,d))/pz(X, ̀ z) + µz,d(X, βz,d) − αz,d g(Z, θ, η) = 
1(Z = z)(1(D = d) − qz,d(X, λz,d))/pz(X, ̀ z) + qz,d(X, λz,d) − νz,d z,d∈{0,1}

where 
θ = [αz,d, νz,d]z,d∈{0,1}, η = [βz,d, λz,d, `z]z,d∈{0,1}. 

The marginal distributions of the potential outcomes for the compliers, F c := FYd|D1>D0Yd 

d ∈ {0, 1}, are also identifed under Assumption 3. This can be seen directly from Theorem 
5(b) replacing Y by the indicators 1(Y ≤ y) with y ∈ Y for a fnite set Y ⊂ R. As in Section 
3, we can invert these distributions to obtain quantiles of the potential outcomes and QTEs 
for the compliers: 

Qc (τ) := F c←(τ ), d ∈ {0, 1}, τ ∈ (0, 1).Yd Yd 

By analogy with the LATE, we will call the τ -QTE for the compliers as local τ -quantile 
treatment e�ects or τ -LQTE: 

δτ
c := QY

c 
1 
(τ) − Qc (τ), τ ∈ (0, 1).Y0 

The estimation of the distribution F c is analogous to the estimation of E(Yd | D1 > D0).Yd

Thus, defne 
pz(X) := P(Z = z | X), µz,d,y(X) := E[1(D = d)1(Y ≤ y} | Z = z, X], 

qz,d(X) := P(D = d | Z = z, X), d ∈ {0, 1}, z ∈ {0, 1}, y ∈ Y. 
Let αz,d,y = E[1(Dz = d)1(Yd ≤ y)], and νz,d = E[1(Dz = d)]. With this notation 

α1,d,y − α0,d,y
F c (y) = ,Yd ν1,d − ν0,d 

where θd,z,y and νz,d are averages of potential outcomes defned in terms of the instrument. 
The moment conditions of the doubly robust approach for these averages are 

E[1(Z = z)(1(D = d)1(Y ≤ y) − µz,d(X))/pz(X) + µz,d,y(X)] − αz,d,y = 0, 

E[1(Z = z)(1(D = d) − qz,d(X))/pz(X) + qz,d(X)] − νz,d = 0. 

Given the parametrizations 
pz(X) = pz(X, ̀ d), µz,d,y = µz,d,y(X, βz,d,y), qz,d(X) = qz,d(X, λz,d), 

the moment function for the GMM approach is � � 
1(Z = z)(1(D = d)1(Y ≤ y) − µz,d,y (X, βz,d))/pz (X, ̀ z ) + µz,d,y(X, βz,d,y ) − αz,d,y g(Z, θ, η) = 

1(Z = z)(1(D = d) − qz,d(X, λz,d))/pz (X.`z ) + qz,d(X, λz,d) − νz,d z,d∈{0,1},y∈Y 

where 
θ = [αz,d,y, νz,d]z,d∈{0,1},y∈Y , η = [βz,d,y, λz,d, `z]z,d∈{0,1},y∈Y . 
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5. Impact of 401(k) on Financial Wealth 

As a practical illustration of the methods developed in this lecture, we consider estima-
tion of the e�ect of 401(k) eligibility and participation on accumulated assets as in [1] and 
[4]. The key problem in determining the e�ect of participation in 401(k) plans on accu-
mulated assets is saver heterogeneity coupled with the fact that the decision to enroll in a 
401(k) is non-random. It is generally recognized that some people have a higher preference 
for saving than others. It also seems likely that those individuals with high unobserved 
preference for saving would be most likely to choose to participate in tax-advantaged re-
tirement savings plans and would tend to have otherwise high amounts of accumulated 
assets. The presence of unobserved savings preferences with these properties then implies 
that conventional estimates that do not account for saver heterogeneity and endogeneity 
of participation will be biased upward, tending to overstate the savings e�ects of 401(k) 
participation. 

We use the same data as [1] and [4]. The data consist of 9,915 observations at the house-
hold level drawn from the 1991 SIPP. All the variables are referred to 1990. We use net 
fnancial assets (net tfa) as the outcome variable, Y , in our analysis.4 Our treatment vari-
able, D, is an indicator for having positive 401(k) balances; and our instrument, Z, is an 
indicator for being eligible to enroll in a 401(k) plan (e401). Among the 3, 682 individuals 
that are eligible, 2, 594 decided to participate in the program. The vector of covariates, X , 
consists of age, income, family size (fsize), years of education (educ), a married indicator, 
a two-earner status indicator, a defned beneft pension status indicator (db), an IRA par-
ticipation indicator (pira), and a home ownership indicator (hown). Further details can be 
found in [4]. [11, 12, 13, 14] and [3] argued that eligibility for enrolling in a 401(k) plan 
in this data can be taken as exogenous after conditioning on a few observables of which 
the most important for their argument is income. Table 1 provides descriptive statistics 
for the variables used in the analysis. The unconditional APE of e401 is 19, 559 and the 
unconditional APE of p401 is 27, 372. 

We frst look at the treatment e�ect of e401 on net total fnancial assets, i.e. setting D = 
Z. This treatment is usually referred to as the intention to treat. Tables 2 and 3 report 
estimates of the ATE and ATT. The frst row in each panel corresponds to a linear model 

Yd = dα + f(X)0β + �z, 

where in panel A f(X) includes indicators of marital status, two-earner status, defned 
beneft pension status, IRA participation status, and home ownership status, and orthogo-
nal polynomials of degrees 2, 4, 6 and 8 in family size, education, age and income, respec-
tively. In panel B we add to f(X) all the two-way interactions. The dimensions of f(X) 

4Net fnancial assets are computed as the sum of IRA balances, 401(k) balances, checking accounts, sav-
ing bonds, other interest-earning accounts, other interest-earning assets, stocks, and mutual funds less non 
mortgage debts. 
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Table 1. Descriptive Statistics 

Mean Std. Dev. e401=1 e401=0 p401=1 p401=0 
net tfa 18,052 63,523 30,347 10,788 38,262 10,890 
e401 0.37 0.48 1.00 0.00 1.00 0.15 
p401 0.26 0.44 0.70 0.00 1.00 0.00 
age 41.06 10.34 41.48 40.81 41.51 40.90 
income 37,200 24,774 46,861 31,494 49,367 32,890 
fsize 2.87 1.54 2.90 2.84 2.92 2.85 
educ 13.21 2.81 13.76 12.88 13.81 12.99 
db 0.27 0.44 0.42 0.19 0.39 0.23 
married 0.60 0.49 0.67 0.56 0.69 0.57 
two-earner 0.38 0.49 0.48 0.32 0.50 0.34 
pira 0.24 0.43 0.32 0.20 0.36 0.20 
hown 0.64 0.48 0.74 0.57 0.77 0.59 
Source: 1991 SIPP. 

in panels A and B are 25 and 275. The second and third row in each panel use the doubly 
robust approach of Section 2 with 

µd(X, βd) = f(X)0βd, and pd(X, ̀ d) = Λ(f(X)0` d), 

where Λ is the logistic link function and f(X) are the same specifcations in panels A and 
B as for the linear model. In table 2, β, β0 and β1 are estimated by least squares, and ` 1 is 
estimated by logit regression.5 In table 3, β is estimated by double selection by partialing 
out f(X) from Y and D using Lasso least squares, β0 and β1 are estimated by Lasso least 
squares, and ` 1 is estimated by Lasso logit regression.6 

Table 2. Average Treatment E�ects of e401 on net tfa 

Est. Std. Error 95% LCI 95% UCI 
A - Without interactions (25 controls) 

Linear Model 9,003 1,238 6,577 11,429 
ATE 6,367 2,012 2,424 10,310 
ATT 11,237 1,520 8,258 14,216 

B - With two-way interactions (275 controls) 
Linear Model 8,968 1,134 6,745 11,191 
ATE 94,608 371,574 -633,663 822,880 
ATT 928,407 744,720 -531,218 2,388,032 

5Note that we do not need to estimate ` 0 because p0(X, ̀ 0) = 1 − p1(X, ̀ 1). 
6We run the Lasso least squares and logit regressions using the R package glmnet [6]. 

http:model.In
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Controlling for covariates reduces the estimates of the ATE by more than half with re-
spect to the unconditional APE of e401, indicating the presence of selection bias. The linear 
model produces estimates in between the ATE and ATT. A comparison between the ATE 
and ATT suggests the presence of heterogeneity in the average e�ects for treated and non 
treated, but this evidence is not statistically signifcant at the 5% level. Panel B of Table 2 
shows that the doubly robust approach produces very noisy estimates in the specifcation 
with interaction of the controls due to overftting. This overftting is refected in estimates 
of the propensity score close to 0 or 1. The selection of controls using Lasso regularizes the 
estimates and produces estimates that are more stable across specifcations. Based on the 
estimates with selection of controls, the average e�ect of 401 eligibility is roughly 8, 000, 
increasing to 11, 100 − 11, 200 for the treated. 

Table 3. Average Treatment E�ects of e401 on net tfa with Selection of Controls 

Est. Std. Error 95% LCI 95% UCI 
A - Without interactions (25 controls) 

Linear Model 8,617 1,331 6,008 11,227 
ATE 8,070 1,098 5,919 10,221 
ATT 11,235 1,540 8,217 14,253 

B - With two-way interactions (275 controls) 
Linear Model 8,365 1,326 5,767 10,963 
ATE 7,922 1,113 5,741 10,104 
ATT 11,116 1,528 8,122 14,111 

Figures 1 and 2 report estimates and 95% confdence bands for the QTE and QTT of e401. 
They are constructed from estimates and confdence bands of distributions of potential 
outcomes using the method described in L7. The distributions are estimated using the 
doubly robust approach of Section 3 with the parametrizations 

µd,y(X, βd,y) = Λ(f(X)0βd,y) and pd(X, ̀ d) = Λ(f(X)0` d), 

where we consider the same specifcations for f(X) as above. We estimate the parameters 
by logit regressions with and without Lasso selection of controls. The confdence bands 
are obtained by multiplier bootstrap with 200 and Mammen multipliers.7 

Looking across the fgures, we see a similar pattern to that seen for the estimates of the 
average e�ects in that the selection-based estimates are stable across all specifcations and 
are very similar to the estimates obtained without selection from the specifcation without 
interactions. If we focus on the QTE and QTT estimated from variable selection methods, 
we fnd that 401(k) eligibility has a small impact on accumulated net total fnancial assets 
at low quantiles while appearing to have a larger impact at high quantiles. Looking at the 
uniform confdence intervals, we can see that this pattern is statistically signifcant at the 

√7The multipliers are drawn as ω = 1 + Z1/ 2 + (Z2
2 − 1)/2, where Z1 and Z2 are independent standard 

normal variables. This multipliers satisfy E(ω) = 0 and E(ω2) = E(ω3) = 1. 
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Figure 1. Quantile treatment e�ects of e401 on net tfa. Panels di�er in 
the specifcation of f(X) and the estimation method. Upper-left: specifca-
tion without interactions and no selection of controls. Upper-right: specif-
cation without interactions and selection of controls by Lasso. Lower-left: 
specifcation with two-way interactions and no selection of controls. Lower-
right: specifcation with two-way interactions and selection of controls by 
Lasso. Conditional distribution and propensity estimated by logit regres-
sion. 95% confdence bands obtained by inversion of 95% joint confdence 
bands for distributions. 
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10% level and that we would reject the hypothesis that 401(k) eligibility has no e�ect and 
reject the hypothesis of a constant treatment e�ect more generally. 

We now turn to the e�ect of participation in 401(k) on net total fnancial assets. Tables 2 
and 3 report estimates of the LATE and LATT. The frst row of each panel report estimates 
from the linear instrumental variables method of [5] that imposes a constant treatment 
e�ect. The second and third row in each panel use the doubly robust approach for LATE 
of Section 4 with the parametrizations 

µz(X, βz) = f(X)0βz, qz(X, λz) = Λ(f(X)0λz), and pz(X, ̀ z) = Λ(f(X)0` z), 

where we consider the same specifcations for f(X) as above. Again, β0 and β1 are es-
timated by least squares, and λ0, λ1 and ` 1 are estimated by logit regression in table 4, 
whereas they are estimated by the Lasso version of the same methods in table 5.8 

Table 4. Local Average Treatment E�ects of p401 on net tfa 

Est. Std. Error 95% LCI 95% UCI 
A - Without interactions (25 controls) 

IV 12,939 1,731 9,547 16,331 
LATE 9,201 2,907 3,503 14,899 
LATT 15,951 2,157 11,722 20,179 

B - With two-way interactions (275 controls) 
IV 12,922 1,567 9,850 15,994 
LATE 134,769 529,304 -902,648 1,172,186 
LATT 1,317,808 1,057,078 -754,026 3,389,642 

The comparison between tables 4 and 5 is similar to the comparison of tables 2 and 
3. Thus, the methods that do not select controls produce very imprecise estimates of the 
LATE and LATT in the specifcation with interactions. The selection of controls using 
Lasso regularizes the estimates and produces estimates that are more stable across spec-
ifcations. Controlling for observed and unobserved heterogeneity reduces the LATE by 
more than half with respect to the APE of p401. IV produces estimates in between the 
LATE and LATT. A comparison between the LATE and LATT suggests the presence of het-
erogeneity in the average e�ects for treated and non treated compliers, but this evidence 
is not statistically signifcant at the 5% level. Based on the estimates with selection of con-
trols, the local average e�ect of 401 participation is between 9, 200 and 11, 600, increasing 
to around 15, 600 − 16, 000 for the treated. 

Figures 3 and 4 report estimates and 95% confdence bands for the LQTE and LQTT 
functions of p401. They are constructed from estimates and confdence bands of distri-
butions of potential outcomes using the method described in L7. The distributions are 

8Note that we do not need to estimate ` 0 because p0(X, ̀ 0) = 1 − p1(X, ̀ 1). 
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Figure 2. Quantile treatment e�ects of e401 on net tfa. Panels di�er in 
the specifcation of f(X) and the estimation method. Upper-left: specifca-
tion without interactions and no selection of controls. Upper-right: specif-
cation without interactions and selection of controls by Lasso. Lower-left: 
specifcation with two-way interactions and no selection of controls. Lower-
right: specifcation with two-way interactions and selection of controls by 
Lasso. Conditional distribution and propensity estimated by logit regres-
sion. 95% confdence bands obtained by inversion of 95% joint confdence 
bands for distributions. 
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Table 5. Local Average Treatment E�ects of e401 on net tfa with Selection 
of Controls 

Est. Std. Error 95% LCI 95% UCI 
A - Without interactions (25 controls) 

IV 12,312 1,788 8,809 15,816 
LATE 11,638 1,583 8,536 14,741 
LATT 15,947 2,186 11,664 20,231 

B - With two-way interactions (275 controls) 
IV 12,022 1,811 8,472 15,571 
LATE 11,568 1,607 8,418 14,717 
LATT 15,640 2,220 11,289 19,990 

estimated using the doubly robust approach of Section 4 with the parametrizations 

pz(X, ̀ d) = Λ(f(X)0` z), µz,d,y(X, βz,d,y) = Λ(f(X)0βz,d,y), qz,d(X, λz,d) = Λ(f(X)0λz,d), 

where we consider the same specifcations for f(X) as above. We estimate all the param-
eters by logit regressions with and without Lasso selection of controls. The confdence 
bands are obtained by multiplier bootstrap with 200 and Mammen multipliers. 

We fnd again that the selection-based estimates of local average e�ects are stable across 
specifcations and are very similar to the estimates obtained without selection from the 
specifcation without interactions. If we focus on the LQTE and LQTT estimated from 
variable selection methods, we fnd that 401(k) participation has a small impact on accu-
mulated net total fnancial assets at low quantiles while appearing to have a larger impact 
at high quantiles for compliers. Looking at the uniform confdence intervals, we can see 
that this pattern is statistically signifcant at the 5% level and that we would reject the hy-
pothesis that the e�ect of 401(k) participation on net total fnancial assets is constant across 
the distribution. 

Appendix A. Treatment Effects on the Treated 
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Figure 3. Local quantile treatment e�ects of p401 on net tfa. Panels di�er 
in the specifcation of f(X) and the estimation method. Upper-left: specif-
cation without interactions and no selection of controls. Upper-right: spec-
ifcation without interactions and selection of controls by Lasso. Lower-left: 
specifcation with two-way interactions and no selection of controls. Lower-
right: specifcation with two-way interactions and selection of controls by 
Lasso. Conditional distribution and propensity estimated by logit regres-
sion. 95% confdence bands obtained by inversion of 95% joint confdence 
bands for distributions. 
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Figure 4. Local quantile treatment e�ects on the treated of p401 on net tfa. 
Panels di�er in the specifcation of f(X) and the estimation method. 
Upper-left: specifcation without interactions and no selection of controls. 
Upper-right: specifcation without interactions and selection of controls by 
Lasso. Lower-left: specifcation with two-way interactions and no selec-
tion of controls. Lower-right: specifcation with two-way interactions and 
selection of controls by Lasso. Conditional distribution and propensity es-
timated by logit regression. 95% confdence bands obtained by inversion 
of 95% joint confdence bands for distributions. 
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