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Abstract. We consider the population and put the linear model in perspective of its proba-

bilistic framework. The goal is to clarify the target of OLS estimation. 

Let (Y, X) be L2(Ω, F , P ) random variables. All we could possibly want to know about these 

quantities is contained in the joint distributions FY,X . This can be thought of the following collection 

of probabilities 

{P {(Y, X) ∈ A} ; A rectangle in Rp+1}. 

However our interest is usually asymmetric in that we are primarily interested in the random 

variable Y , and use random vector X only as a tool to reduce uncertainty about Y . In this case, 

we don’t need to know probabilities of events that allow for uncertainty in both Y and X, but only 

those events that prescribe a fixed value x to X, whatever that value might happen to be. This 

information is contained in the collection of conditional distributions Fx 
1 that describe uncertainty 

about Y , when X is known to have realized as x. Equivalently, 

{P (Y ∈ A|X = x) ; A rectangle in R1 , x ∈ Rp}. 

A distribution of Y for each value x is a lot of information. The regression function f(x) that 

assigns to each x the mean of the conditional distribution Fx is a nice way to summarize and 

visualize the dependence of randomness in Y on X: 2 

f(x) := E[Y |X = x]. 

There is a very nice geometric interpretation of regression that relies on the notion of orthogo-

nality in linear spaces. If we decompose 

L2(Ω, F , P ) = L2(Ω, σ(X), P ) ⊕ L2(Ω, σ(X), P )⊥ , 

then regression E[Y |X] is the orthogonal projection of Y onto L2(Ω, σ(X), P ): 

Y ≡ E[Y |X] + ε, 

where the residual ε is orthogonal to all functions of X: for every Z ∈ L2(Ω, σ(X), P ) we have 

EεZ = 0. We make one more use of orthogonality to express the regression function as an infinite 

vector of coordinates. Let {ψj }j≥1 be an orthonormal basis for L2(Ω, σ(X), P ) chosen in the way 

that ψ1, . . . , ψp span all linear combinations of random variables X1, . . . , Xp, and decompose f(X) 

into its Fourier series 
pX X 

f(X) = αj ψj + αj ψj . (1) 
j=1 j>p 

If we think of ψ as appropriately normalized polynomials in X, then the first p terms is the linear 

part of f and the rest of the series is the nonlinear part of the regression function. Finally, when 

we estimate a regression, we project Y only onto the first p terms of above decomposition which 

1As a side remark, it is at all not straightforward to give meaning to the above set. The difficulty stems from the 
fact that the collection of events we must assign conditional probabilities to is uncountable , whereas measure theory 
allows for only countable operations. The construction is called regular conditional probabilities and is possible only 
under topological conditions that allow to reconcile this gap. 

2Continuing with the side remark, conditional probabilities are defined in terms of the conditional expectation, 
but this construction does not guaranty that A 7→ P (Y ∈ A|X = x) is a probability measure for any given x. 
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can be called the linear regression function. 

In the above discussion we made extensive use of orthogonality, yet regression coefficients are 

traditionally defined though a minimization problem. In fact, the two definitions are equivalent! 

This is a very important and useful characterization of orthogonal decomposition. First observe 

that eq. (1) is another orthogonal decomposition: 

L2(Ω, σ(X), P ) = span(X1, . . . , Xp) ⊕ span(ψj )j>p 

where we have replaced the first p terms of the orthonormal basis with the original linear terms 

that are not necessarily orthogonal. In this new basis, the linear part of the regression function has 

coordinates β. We will see how this effects the coefficients of linear regression shortly. Define the 

linear regression coefficient 

b := arg min E[f(X) − b0X]2 (2) 
b∈Rp 

and residual 

�(b) := f(X) − b0X. 

Claim: b solves (2) iff �(b) is orthogonal to span(X1, . . . , Xp). This follows immediately from the 

following decomposition of the norm of f(X): 3 

kf(X) − b0Xk2 = kf(X) − β0Xk2 + 2hf(X) − β0X, β0X − b0Xi + kβ0X − b0Xk2 (3) 

First recall that β is defined as the orthogonal projection of f(X) onto span(X1, . . . , Xn), so 

that the residual f(X) − β0X is orthogonal to span(X1, . . . , Xp) by construction. Thus, the middle 

term in eq. (3) is zero for any choice of coefficient b because β0X − b0X ∈ span(X1, . . . , Xp), 

and we see that k�(b)k ≥ k�(β)k. Conversely, if b solves (2), decomposition eq. (3) implies that 

β0X = b0X (the middle term is still zero by definition of β!) and therefore �(b) = �(β) is orthogonal 

to span(X1, . . . , Xp). 

Putting all of the above together, we have produced the following orthogonal decomposition of 

random variable Y X 
Y = β0X + αj ψj + ε. (4) 

j>p 

The target of linear regression is the first term on the right. It is characterized by minimizing the 

size of the residual � + ε and, equivalently, by producing a residual that is orthogonal to all of 

span(X1, . . . , Xp). 

Above we used X1, . . . , Xp as basis to define linear regression coefficient β. This choice of basis is 

natural because it is how we observe data, but does not immediately allow us to interpret coefficients 

β. If we partition X = (D, W ) and β = (β1, β2), we can project orthogonally any variable of interest 

3We use kZk2 to denote EZ2, and hY, Zi to denote E[Y Z]. 
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onto span(W ): 

eY Y, Y orthogonal to span(W )= W 0γYW + e eD, D orthogonal to span(W ) 

� + ε = 0 + � + ε 

W = W + 0, 

third line above follows by recalling that � and ε are orthogonal to span(X). Now substitute above 

decomposition with respect to subspace spanned by W into the regression equation (4): 

D = W 0γDW + e

eW 0γYW + Ye = β1
0 W 0γDW + β1 

0 D + β2
0 W + � + ε 

rearrange h i e = β0 e β0Y 1D + 1W 0γDW + β2
0 W + � + ε − W 0γYW 

and note that the term in brackets is orthogonal to span( De)! By our equivalence result it follows 

that β1 is the projection coefficient of Ye onto span( De). So we can think of β1 as the linear term of � � � � 
regression of Y − linear part in W on D − linear part in W . 
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