
V.C. 14.381 Class Notes1 

1. Fundamentals of Regression 

1.1. Regression and Conditional Expectation Function. Suppose yt is real re-

sponse variable, and wt is a d-vector of covariates. We are interested in the conditional 

mean (expectation) of yt given wt: 

g(wt) := E[ytjwt]: 

It is customary also to de¯ne a regression equation: 

yt = g(wt) + " t; E[" tjwt] = 0; 

where yt is thought of as a dependent variable, wt as independent variables, and " t 

as a disturbance. 

Regression function can also be de¯ned as the solution to the best conditional 

prediction problem under the square loss: for each w, we have 

g(w) = arg min E[(yt ¡ g~)2jw]: 
g~2R 

1The notes are very rough and are provided for your convenience only. Please e-mail me if you 

notice any mistakes (vchern@mit.edu). 
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Therefore conditional mean function also solves the unconditional predication prob-

lem: 

g(¢) = arg min E[(yt ¡ g~(wt))
2]; 

g~(¢)2G 

where the argmin is taken over G, the class of all measurable functions of w. This 

formulation does not easily translate to either estimation or computation. 

Thus in this course we will learn to 

² ¯rst approximate g(wt) by x0 
t ̄ , for ¯ 2 RK and xt formed as transformations 

of the original regressor, 

xt = f(wt); 

where the choice of transformations f is based on the approximation theory, 

² then, estimate xt 
0 ̄  reasonably well using data, and make small-sample and 

large sample inferences on xt 
0 ̄  as well as related quanities. 

Example 1: In Engel (1857), yt is a household's food expenditure, and wt is 

household's income. A good approximation appears to be a power series such as 

g(wt) = ¯ 0 + ¯ 1wt + ¯ 2wt 
2 . Engle actually used Haar series (approximation based on 

many dummy terms). Of interest is the e®ect of income on food consumption 

@g(w)
: 

@w 

See the ¯gure distributed in class. 
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Figure 1. 

Example 2: Suppose yt 
¤ is the birthweight, and wt is smoking or quality of medical 

care. Clearly E[y ¤jwt] is an interesting object. Suppose we are interested in the impact t 

of wt on very low birthweights; one way to do this is to de¯ne 

yt := 1fy ¤ < cg;t 
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where c is some critical level of birthweight. Then we can study 

g(wt) = E[ytjwt] = P [y ¤ < cjwt]:t 

This regression function measures the dependence of probability of occurance of ex-

treme birthweight on covariates.2 

Suppose we are able to recover E[ytjwt]. What do we make of it? 

Schools of thought: 

1. Descriptive. Uncover interesting stylized facts. Smoking \"reduces" mean 

birthweight (but does not extreme birthweight). 

2. Treatment E®ects. An ideal set up for inferring causal e®ect is thought to 

be a perfectly controlled randomized trial. Look for natural experiments when the 

latter is not available. 

3. Structural E®ects. Estimate parameter of an economic (causal, structural) 

model. Use economics to justify why E[ytjxt] might be able to identify economic 

parameters. See Varian's chapter. 

1.2. OLS in Population and Finite Sample. 

1.2.1. BLP Property. In population LS ¯ is de¯ned as the minimizer (argmin) of 

0 b]2Q(b) = E[yt ¡ xt

¤2Another way is to look at the quantiles of y as a function of wt, which is what quantile regression t 

accomplishes. 
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and is thus x0 
tb the best linear predictor of yt in population under square loss. In 

^¯nite samples LS ¯ is de¯ned as the minimizer of 

Qn(¯) = En[yt ¡ x 0 t ̄ ]
2; 

Pn 0where En is empirical expectation (a shorthand for 1 ). Thus xtb the best linear n t=1

predictor of yt in the sample under square loss. 

We can also state an explicit solution for ¯. Note that ¯ solves the ¯rst-order 

condition 

E[xt(yt ¡ x 0 ¯)] = 0; i.e. ¯ = E[xtx 0 ]¡1E[xtyt];t t

provided E[xtxt
0 ] has full rank. LS in sample replaces population moments by empir-

ical moments: 

^ ^En[xt(yt ¡ x 0 ¯)] = 0; i.e. ¯ = En[xtx 0 ]¡1En[xtyt];t t

provided En[xtxt
0 ] has full rank. 

1.2.2. OLS as the Best Linear Approximation. Observe that 

0 0 0Q(b) = E[yt ¡ x b]2 = E[E[ytjwt] ¡ x b + " t]
2 = E[E[ytjwt] ¡ x b]2 + E[" t]

2;t t t

where " t = yt ¡ E[ytjwt]. Therefore ¯ solves 

min E(E[ytjwt] ¡ x 0 b)2;t
b 
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and x0 ̄  is the best linear approximation to conidtional mean function E[ytjwt]. This t 

provides a link to the approximation theory. 

1.2.3. Building Functional Forms. The link to approximation theory is useful, be-

cause approximation theory can be used to build good functional forms for our re-

gressions. Here we focus the discussion on the approximation schemes that are most 

useful in econometric applications.3 

1. Spline Approximation: Suppose we have one regressor w, then the linear spline 

(spline of order 1) with a ¯nite number of equally spaced knots k1; k2; :::; kr takes the 

form: 

xt = f(wt) = (1; wt; (wt ¡ k1)+; :::; (wt ¡ kr)+)
0 

The cubic spline takes the form: 

xt = f(wt) = (1; (wt; w
2; w3); (wt ¡ k1)

3 ; :::; (wt ¡ kr)
3 )0:t t + +

When specifying splines we may control K { the dimension of xt. The function 

w 7! f(w)0b constructed using splines is twice di®erentiable in w for any b. 

2. Power Approximation: Suppose we have one regressor w, transformed to have 

support in [0; 1], then the r-th degree polynomial series is given by: 

xt = f(wt) = (1; wt; :::; wt
r)0: 

3W. Newey's paper provides a good treatment from an estimation prospective. See K. Judd's 

book for a good introduction to approximations methods. 
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Chebyshev polynomials are often used instead of the simple polynomials. Suppose 

wt is transformed to have values ranging between [¡1; 1], the Chebyshev polynomials 

can be constructed as 

xt = f(wt) = (cos(j ¢ cos¡1(wt)); j = 0; :::; r) 

(They are called polynomials because f(wt) = (1; wt; 2w2 ¡ 1; 4w3 ¡ 3wt; :::; ), and t 

thus are indeed polynomial in wt.)
4 

3. Wavelet Approximation. Suppose we have one regressor w, transformed to have 

support in [0; 1], then the r-th degree wavelet series is given by: 

xt = f(wt) = (ej(i2¼wt); j = 0; :::; r); 

or one can use sines and cosines bases separately. 

The case with multiple regressors can also be addressed similarly: Suppose that 

the basic regressors are w1t; :::wdt, then we can create d series for each basic regressor, 

then create all interactions of the d series, called tensor products, and collect them 

into regressor vector xt. If each series for a basic regressor has J terms, then the ¯nal 

regressor has dimension K ¼ Jd, which explodes exponentially in the dimension d (a 

manifestation of the curse of dimensionality). For a formal de¯nition of the tensor 

products see e.g. Newey. 

4See K. Judd's book for further detail; also see http://mathworld.wolfram.com/ 

http:http://mathworld.wolfram.com
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Theorem 1.1. Suppose wt has a bounded support on a cube in Rd and has a positive, 

bounded density. If g(w) is s-times continuously di®erentiable with bounded deriva-

tives (by a constant M), then using K-term series x = f(w) of the kind described 

above, the approximation error is controlled as: 

min[E[g(wt) ¡ x 0 b]2]1=2 · constM ¢ K¡°=d;t
b 

where ° = s for power series and wavelets, and for splines ° = min(s; r), where r is 

the order of the spline. 

Thus, as K ! 1, the approximation error converges to zero. The theorem also 

says that it is easier to approximate a smooth function, and it is harder to approxi-

mate a function of many basic regressors (another manifestation of the curse of the 

dimensionality). It should be noted that the statement, that the approximation error 

goes to zero as K ! 1, is true even without smoothness assumptions, in fact it 

su±ces for g(w) to be measurable and square integrable. 

The approximation of functions by least squares using splines and Chebyshev series 

has good properties, not only in minimizing mean squared approximation error but 

also in terms of the maximum distance to the approximand (the latter property is 

called co-minimality). 
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1.3. Examples on Approximation. Example 1.(Synthetic) Suppose function g(w) = 

w + 2sin(w), and that wt is uniformly distributed on integers f1; :::; 20g. Then OLS 

in population solves the approximation problem: 

¯ = arg min E[g(wt) ¡ x 0 b]2 
t

b 

for xt = f(wt). Let us try di®erent functional forms for f . In this exercise, we form 

f(w) as (a) linear spline (Figure 1,left) and (b) Chebyshev series (Figure 1,right), 

such that dimension of f(w) is either 3 or 8. 

Then we compare the function g(w) to the linear approximation f(w)0¯ graphically. 

In Figure 1 we see that the parsimonious model with K = 3 accurately approximates 

global shape (\big changes") in the conditional expectation function, but does not 

accurately approximate the local shape (\small changes"). Using more °exible form 

with K = 8 parameters leads to better approximation of the local shape. We see also 

the splines do much better in this example than Chebyshev polynomials. 

We can also look at the formal measures of approximation error such as the root 

mean square approximation error (RMSAE): 

[E[g(wt) ¡ f(wt)
0¯]2]1=2; 

and the maximum approximation error (MAE): 

max jg(w) ¡ f(w)0¯j: 
w 
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Figure 2. 

These measures are computed in the following table: 
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spline K = 3 spline K = 8 Chebyshev K = 3 Chebyshev K = 8 

RMSAE 1.37 0.65 1.39 1.09 

MAE 2.27 0.95 2.19 1.81 

Example 2.(Real) Here g(w) is the mean of log wage (y) conditional on education 

w 2 f8; 9; 10; 11; 12; 13; 14; 16; 17; 18; 19; 20g: 

The function g(w) is computed using population data { the 1990 Census data for the 

U.S. men of prime age 5 . We would like to know how well this function is approximated 

by OLS when common approximation methods are used to form the regressors. For 

simplicity we assume that wt is uniformly distributed (otherwise we can weigh by the 

frequency). In population, OLS solves the approximation problem: min E[g(wt) ¡ 

x0 
tb]

2 for xt = f(wt), where we form f(w) as (a) linear spline (Figure 2,left) and (b) 

Chebyshev series (Figure 2,right), such that dimension of f(w) is either K = 3 or 

K = 8. 

Then we compare the function g(w) to the linear approximation f(w)0¯ graphically. 

We also record RMSAE as well as the maximum error MAE. The approximation errors 

are given in the following table: 

5See Angrist, Chernozhukov, Fenrandez-Val, 2006, Econometrica, for more details 
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Figure 3. 

spline K = 3 spline K = 8 Chebyshev K = 3 Chebyshev K = 8 

RMSAE 0.12 0.08 0.12 0.05 

MAE 0.29 0.17 0.30 0.12 
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References: 

1. Newey, Whitney K. Convergence rates and asymptotic normality for series 

estimators. J. Econometrics 79 (1997), no. 1, 147{168. (The de¯nition of regression 

splines follows this reference). 

2. Judd, Kenneth L. Numerical methods in economics. MIT Press, Cambridge, 

MA, 1998. (Chapter Approximation Methods. This is quite an advanced reference, 

but it is useful to have for many econometric and non-econometric applications.) 

3. Hal R. Varian. Microeconomic Analysis (Chapter Econometrics. This is a great 

read on Structural Econometrics, and has a lot of interesting ideas.). 

These materials have been posted at stellar.mit.edu. 

http:stellar.mit.edu
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2. Regression Calculus 

2.1. Matrix Calculations. The following calculations are useful for ¯nite sample 

inference. Let Y = (y1; :::; yn)0 and X be the n £ K matrix with rows xt
0 , t = 1; :::; n. 

Using this notation we can write 

^̄ = arg min (Y ¡ Xb)0(Y ¡ Xb); 
b2Rk

If rank(X) = K, the Hessian for the above program 2X 0X is positive de¯nite; this 

^veri¯es strict convexity and implies that the solution is unique. The solution ¯ is 

determined by the ¯rst order conditions, called normal equations: 

(1) X 0(Y ¡ X¯) = 0: 

Solving these equations gives 

^̄ = (X 0X)¡1X 0Y: 

The ¯tted or predicted values are given by the vector 

Y := X¯̂ = X 0(X 0X)¡1X 0Y = PX Y; b

Also de¯ne the residuals as 

ê := Y ¡ X 0¯̂ = (I ¡ PX )Y = MX Y: 

Geometric interpretation: Let L := span(X) := fXb : b 2 Rkg be the linear 

space spanned by the columns of X. Matrix PX is called the projection matrix because 
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it projects Y onto L. Matrix MX is a projection matrix that projects Y onto the 

subspace that is orthogonal to L. 

Indeed, LS solves the problem 

min(Y ¡ Y ¤ )0(Y ¡ Y ¤ )
Y ¤2L

The solution Y ¤ = Y is the orthogonal projection of Y onto L, that is b

^(i) Y 2 L (ii) S 0 e = 0; 8S 2 L; eb := (Y ¡ Yb ) = MX Y: b

To visualize this, take a simple example with n = 2, one-dimensional regressor, 

and no intercept, so that Y = (y1; y2)
0 2 R2 , X = (x1; x2) 2 R2, and ¯ 2 R. (See 

Figure drawn in Class). 

Some properties to note: 

1. If regression has intercept, i.e. a column of X is 1 = (1; ::; 1)0, then Y¹ = X¹ 0¯̂. 

The regression line passes through the means of data. Equivalently, since 1 2 L, 

10ê = 0 or e ¹̂ = 0. 

2. Projection (\hat") matrix PX = X(X 0X)¡1X 0 is symmetric (PX 
0 = PX ) and 

idempotent (PX PX = PX ). PX is an orthogonal projection operator mapping vectors 

in Rn to L. In particular, PX X = X, PX ê = 0, PX Y = X¯̂. 

3. Projection matrix MX = I ¡ PX is also symmetric and idempotent. MX maps 

vectors in Rn to the linear space that is orthogonal to L. In particular, MX Y = e,b
MX X = 0, and MX ê = ê. Note also MX PX = 0. 
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2.2. Partitioned or Partial Regression. Let X1 and X2 partition X as 

X = [X1; X2] 

and think of a regression model 

Y = X1 ̄  1 + X2 ̄  2 + ": 

^Further, let PX2 = X2(X2
0 X2)

¡1X2 
0 
and MX2 = I ¡ PX2 . Let V1 = MX2 X1 and 

^ ^U = MX2 Y , that is V1 is the residual matrix from regressing columns of X1 on X2, 

^and U is the residual vector from regressing Y on X2. 

^Theorem 2.1. The following estimators are equivalent: 1. the component ¯ 1 of 

vector estimate (¯̂1
0 ; ¯̂2

0 )0 obtained from regressing Y on X1 and X2; 2. ~̄
1 obtained 

^ ¹ ^ ^from regressing Y on V1; 3. ¯ 1 obtained from regressing U on V1. 

Proof. Recall the following Fact shown above in equation (1): 

(2) °̂ is OLS of Y on Z i® Z 0(Y ¡ Z°̂) = 0: 

Write 

^ ^ ^ ^ ^Y = X1 ̄  1 + X2 ̄  2 + ê = V1 ̄  1 + (X1 ¡ V̂1)¯̂1 + X2 ̄  2 + ê: | {z
^́ 

}

^ ¹ V̂ 0By the fact (2) above ¯ 1 = ¯ 1 if and only if 1 ́^ = 0. The latter follows because 

V̂ 0ê = 0 by V̂1 = MX2 X1 2 span(X), X 0 V̂1 = X 0 MX2 X1 = 0, and (X1 ¡ V̂1)
0V̂1 = 1 2 2

(PX2 X1)
0MX2 X1 = 0. 
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^ ¹To show ¯ 1 = ¯ 1, write 

MX2 Y ^ ^= MX2 (X1 ̄  1 + X2 ̄  2 + ê); 

which can be equivalently stated as (noting that MX2 X2 = 0) 

^U = V1 ̄  1 + MX2 ê:b b

V 0 V̂ 0Since b1 MX2 ê = (MX2 X1)
0(MX2 ê) = X 0 

1MX2 ê = 1 ̂e = 0; it follows that ^ ¹¯ 1 = ¯ 1: 
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Applications of Partial Regression: 

^1. Interpretation: ¯ 1 is a partial regression coe±cient. 

2. De-meaning: If X2 = 1, then MX2 = I ¡ 1(101)¡110 = I ¡ 110=n; and 

MX2 Y = Y ¡ 1Y¹ , MX2 X1 = X1 ¡ 1X¹1
0 . Therefore regressing Y on constant X2 = 1 

and a set, X1, of other regressors produces the same slope coe±cients as (1) regressing 

deviation of Y from its mean on deviation of X1 from its mean or (2) regressing Y 

on deviations of X1 from its mean. 

3. Separate Regressions: If X1 and X2 are orthogonal, X1
0 X2 = 0, then ¯̂1 obtained 

~from regressing Y on X1 and X2 is equivalent to ¯ 1 obtained from regressing Y on X1. 

^ ^ ^To see this, write Y = X1 ̄  1 + (X2 ̄  2 + ê) and note X1
0 (X2 ̄  2 + ê) = 0 by X1

0 X2 = 0 

^ ~and X1 
0 ê = 0. By the fact (2), it follows that ¯ 2 = ¯ 2. 

4. Omitted Variable Bias: If X1 and X2 are not orthogonal, X1
0 X2 6 0, then = 

^ ~¯ 1 obtained from regressing Y on X1 and X2 is not equivalent to ¯ 1 obtained from 

regressing Y on X1. However, we have that 

^~̄
1 = (X1

0 X1)
¡1X1

0 (X1 ̄ 1̂ + X2 ̄ 2̂ + ê) = ¯̂1 + (X1
0 X1)

¡1X1
0 (X2 ̄  2): 

That is, the coe±cient in \short" regression equals the coe±cient in the \long" re-

^gression plus a coe±cient obtained from the regression of \omitted" term X2 ̄  2 on 
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the included regressor X1. It should be clear that this relation carries over to the 

population in a straightforward manner. 

Example: Suppose Y are earnings, X1 is education, and X2 is unobserved ability. 

^ ~Compare the \long" coe±cient ¯ 1 to the "short" coe±cient ¯ 1. 

2.3. Projections, R2, and ANOVA. A useful application is the derivation of the 

R2 measure that shows how much of variation of Y is explained by variation in 

X. In the regression through the origin, we have the following analysis of variance 

decomposition (ANOVA) 

Y 0 0Y 0Y = e e:b Yb + bb
Y 0 0Then R2 := b Y =Y 0Y = 1 ¡ ebe=Y 0Y , and 0 · R2 · 1 by construction. b b

When the regression contains an intercept, it makes sense to de-mean the above 

values. Then the formula becomes 

(Y ¡ Y¹ )0(Y ¡ Y¹ ) = ( Ŷ ¡ Y¹ )0(Ŷ ¡ Y¹ ) + eb0e;b

and 

R2 := (Yb ¡ Y¹ )0(Yb ¡ Y¹ )=((Y ¡ Y¹ )0(Y ¡ Y¹ )) = 1 ¡ eb0 e=(Y ¡ Y¹ )0(Y ¡ Y¹ );b

where 0 · R2 · 1, and residuals have zero mean by construction, as shown below. 
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3. Estimation and Basic Inference in Finite Samples 

3.1. Estimation and Inference in Gauss-Markov Model. GM model is a collec-

tion of probability laws fPµ; µ 2 £g for the data (Y; X) with the following properties: 

GM1 Y = X¯ + "; ¯ 2 Rk linearity 

GM2 rank(X) = k identi¯cation 

GM3 Eµ[" j X] = 0 8 µ 2 £ orthogonality, correct speci¯cation, exogeneity 

GM4 Eµ[""
0 j X] = ¾2In£n 8 µ 2 £ sphericality 

Here the parameter µ, that describes the probability model Pµ, consists of 

(¯; ¾2; F"jX ; FX ); 

where ¯ is the regression parameter vector, ¾2 is variance of disturbances, F"jX is 

the conditional distribution function of errors ² given X, and FX is the distribution 

function of X. Both F²jX and FX are left unspeci¯ed, that is nonparametric. 

The model rules out many realistic features of actual data, but is a useful starting 

point for the analysis. Moreover, later in this section we will restrict the distribution 

of errors to follow a normal distribution. 
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GM1 & GM3: These assumptions should be taken together, but GM3 will be 

discussed further below. The model can be written as a linear function of the param-

eters and the error term, i.e.yi = ¯0xi + " i; where GM3 imposes that E[² ijxi] = 0, and 

in fact much more, as discussed below. 

This means that we have correctly speci¯ed the conditional mean function of Y 

by a functional form that is linear in parameters. At this point we can recall how 

we built functional forms using approximation theory. There we had constructed xt 

as transformations of some basic regressors, f(wt). Thus, the assumptions GM1 and 

GM3 can be interpreted as stating E[ytjwt] = E[ytjxt] = x0 ̄ , which is an assumption t 

that we work with a perfect functional form and that the approximation error is 

numerically negligible. Many economic functional forms will match well with the 

stated assumptions.6 

6 For example, a non-linear model such as the Cobb-Douglas production function yi = 

L1¡®AK® e " i ; can easily be transformed into a linear model by taking logs: i i 

ln yi = ln A + ® ln Li + (1 ¡ ®) ln Ki + " i 

This also has a nice link to polynomial approximations we developed earlier. In fact, putting 

additional terms (ln L)2 and (ln K2) in the above equation gives us a translog functional form and 

is also a second degree polynomial approximation. Clearly, there is an interesting opportunity to 

explore the connections between approximation theory and economic modeling. 
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GM2: Identi¯cation.7 The assumption means that explanatory variables are 

linearly independent. The following example highlights the idea behind this require-

ment. Suppose you want to estimate the following wage equation: 

log(wagei) = ¯ 1 + ¯ 2edui + ¯ 3tenurei + ¯ 4experi + " i 

where edui is education in years, tenurei is years on the current job, and experi is 

experience in the labor force (i.e., total number of years at all jobs held, including 

the current). But what if no one in the sample ever changes jobs so tenurei = experi 

for all i. Substituting this equality back into the regression equation, we see that 

log(wagei) = ¯ 1 + ¯ 2edui + (¯ 3 + ¯ 4)experi + " i: 

We therefore can estimate the linear combination ¯ 3 + ¯ 4, but not ¯ 3 and ¯ 4 sepa-

rately. This phenomenon is known as the partial identi¯cation. It is more common 

in econometrics than people think. 

GM3: Orthogonality or Strict Exogeneity. The expected value of the dis-

turbance term not depend on the explanatory variables: 

E ["jX] = 0: 

Notice that this means not only thatE [" ijxi] = 0 but also that E [" ijxj ] = 0 for all 

j. That is, the expected value of the disturbance for observation i not only does not 

7This example and some of the examples below were provided by Raymond Guiterras. 
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depend on the explanatory variables for that observation, but also does not depend on 

the explanatory variables for any other observation. The latter may be an unrealistic 

condition in time series setting, but we will relax this condition in the next section. 

Also, as we have noticed earlier, the assumption may also be unrealistic since it 

assumes perfect approximation of the conditional mean function. 

There is another reason why this assumption should be looked with a caution. 

Recall that one of the main purposes of the econometric analysis is to uncover causal or 

structural e®ects. If the regression is to have a causal interpretation, the disturbances 

of a true causal equation: 

yi = x 0 i ° + ui 

must satisfy the orthogonality restrictions such as E[uijxi] = 0. If it does, then the 

causal e®ect function x0 
i ° coincides with regression function x0 

i ̄ . 

The following standard example helps us clarify the idea. Our thinking about the 

relationship between income and education and the true model is that 

yi = ° 1xi + ui; ui = ° 2Ai + " i 

where xi is education, ui is a disturbance that is composed of an ability e®ect ¯ 2Ai 

and another disturbance ² i which is independent of xi, Ai, and ". Suppose that 

both education and ability are de-meaned so that xi measures deviation from average 

education, and Ai is a deviation from average ability. In general education is related 
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to ability, so 

E[uijxi] = ° 2E[Aijxi] 6= 0: 

Therefore orthogonality fails and ° 1 can not be estimated by regression of yi on xi. 

Note however, if we could observe ability Ai and ran the long regression of yi on 

education xi and ability Ai, then the regression coe±cients ¯ 1 and ¯ 2 would recover 

the coe±cients ° 1 and ° 2 of the causal function. 

GM4: Sphericality. This assumption embeds two major requirements. The ¯rst 

is homoscedasticity : E ["2jX] = ¾2; 8 i: This means that the conditional covariance i 

of each disturbance term is the same for all observations. This is often a highly 

unrealistic assumption. 

The second is nonautocorrelation: E [" i " j jX] = 0 8 i 6 j: This means that the = 

disturbances to any two di®erent observations are uncorrelated. In time series data, 

disturbances often exhibit autocorrelation. 

Moreover the assumption tacitly rules out many binary response models (and other 

types of discrete response). For example, suppose yi 2 f0; 1g than 

yi = E[yijxi] + " i = Pr[yi = 1jxi] + " i; 

where " i has variance P [yi = 1jxi](1 ¡ P [yi = 1jxi]) which does depend on xi, except 

for the uninteresting case where P [yi = 1jxi] does not depend on xi. 
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3.2. Properties of OLS in Gauss-Markov Model. We are interested in various 

functionals of ¯, for example, 

² ¯ j , a j-th component of ¯ that may be of interest, 

² (x1 ¡ x0)
0¯, a partial di®erence that result from a change in regressor values 

on the conditional mean, 
0@x(w)² 

@wk 
¯, a partial derivative of conditional mean with the elementary regressor 

wk. 

These functionals are of the form 

0¯ c 2 RK c for : 

^Therefore it makes sense to de¯ne e±ciency of ¯ in terms of the ability to estimate 

such functionals as precisely as possible. 

Under the assumptions stated, it follows that 

Eµ[¯̂jX] = Eµ[(X
0X)¡1X 0(X¯ + ") j X] = I¯ + 0 = ¯ 8µ 2 £: 

This property is called mean-unbiasedness. It implies in particular that the estimates 

of linear functionals are also unbiased Eµ[c
0¯̂jX] = c0¯. 

Next, we would like to compare e±ciency of OLS with other estimators of the 

~regression coe±cient ¯. We take a candidate competitor estimator ¯ to be linear and 

~unbiased. Linearity means that ¯ = a + AY , where a and A are measurable function 

~of X, and Eµ[¯jX] = ¯ for all µ in £. Note that unbiasedness requirement imposes 



26 

that a + AX¯ = ¯, for all ¯ 2 Rk, that is, 

AX = I and a = 0: 

^Theorem 3.1. Gauss-Markov Theorem. In the GM model, conditional on X, ¯ 

is the minimum variance unbiased estimator of ¯, meaning that any other unbiased 

~linear estimator ¯ satis¯es the relation: 

0 ~ 0 ^Varµ[c ¯ j x] ¸ Varµ[c ¯ j X]; 8c 2 RK ; 8µ 2 £: 

The above property is equivalent to c0Varµ[ ~̄ j X]c ¡ c0Varµ[¯̂ j X]c ¸ 0 8c 2 

RK ; 8µ 2 £; which is the same as saying 

Varµ[ ~̄ j X] ¡ Varµ[¯̂ j X] is positive de¯nite 8µ 2 £: 

Example. Suppose yt represents earnings, xt is schooling. Mean e®ect of a change 
¤ ¤in schooling is E[yt j xt = x ¤]¡E[yt j xt = x] = (x ¡x)0¯. By GM Theorem, (x ¡x)0¯̂

is MVLUE of (x ¤ ¡ x)0¯: 

Example. One competitor of OLS is the weighted least squares estimator (WLS) 

with weights W = diag(w(x1); :::; w(xn)). WLS solves min¯ En[(yt ¡ x0 
t ̄ )

2w(xt)], or, 

^equivalently min¯ (Y ¡ X¯)0W (Y ¡ X¯). The solution is ¯ W LS = (X 0WX)¡1X 0W Y; 
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and ¯̂W LS is linear and unbiased (show this). Under GM1-GM4 it is less e±cient than 

OLS, unless it coincides with OLS. 

3.3. Proof of GM Theorem. Here we drop indexing by µ: Unbiasedness was ver-

~i¯ed above. Take also any other unbiased estimator ¯ = AY: By unbiasedness, 
0 ~ 0 ^AX = I: Observe that var[c ¯ j X] = c0AA0c¾2 and var[c ¯ j X] = c0(X 0X)¡1c ¢ ¾2 . It 

su±ces to show the equality 

0 ~ 0 ^ 0 ~ 0 ^var[c ¯ j X] ¡ var[c ¯ j X] = var[c ¯ ¡ c ¯ j X]; 

since the right hand side is non-negative. Write 

0 ~ 0 ^var[c ¯ ¡ c ¯ j X] = var[c 0(A ¡ (X 0X)¡1X 0)(X¯ + ²) j X]| {z }
M 

= var[M" j X] = E[M""0M 0 j X] = MM 0¾2 (by A4) 

= c 0[AA0 ¡ (X 0X)¡1]c ¢ ¾2 ((= AX = I) 

= c 0AA0c¾2 ¡ c 0(X 0X)¡1 c ¢ ¾2¤ 

Remark: This proof illustrates a general principle that is used in many places, 

such as portfolio theory and Hausman-type tests. Note that variance of the di®erence 

has very simple structure that does not involve covariance: 

0 ~ 0 ^ 0 ~ 0 ^var[c ¯ ¡ c ¯ j X] = var[c ¯ j X] ¡ var[c ¯ j X] 
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This is because 

0 ~ 0 ^cov[c ¯; c0¯̂ j X] = var[c ¯ j X]: 

0 ~ 0 ^This means that an ine±cient estimate c ¯ equals c ¯, an e±cient estimate, plus 

additional estimation noise that is uncorrelated with the e±cient estimate. 

3.4. OLS Competitors and Alternatives. Part I. Let us consider the following 

examples. 

Example [Expert Estimates vs OLS ] As an application, suppose ¯ = (¯ 1; :::¯k)
0 , 

where ¯ 1 measures elastiticity of demand for a good. In view of the foregoing def-

initions and GM theorem, analyze and compare two estimators: the ¯xed estimate 

^¯1 
¤ = 1, provided by an industrial organization expert, and ¯ 1, obtained as the ordi-

nary least squares estimate. 

² When would you prefer one over the other? 

² Is GM theorem relevant for this decision? 

The estimates may be better than OLS in terms of the mean squared error: 

Eµ[(¯ ¤ ¡ ¯)2] < Eµ[(¯̂ ¡ ¯)2] 

for some or many values of µ 2 £, which also translates into smaller estimation error 

of linear functionals. The crucial aspect to the decision is what we think £ is. See 
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notes taken in class for further discussion. Take a look at Section 3.9 as well. 

Example [Shrinkage Estimates vs OLS ] Shrinkage estimators experience revival 

in learning theory, which is a modern way of saying regression analysis. 

An example of a shrinkage estimators is the one that solves the following problem: 

min[(Y ¡ Xb)0(Y ¡ Xb)=2 + ¸(b ¡ ¯ ¤ )X 0X(b ¡ ¯ ¤ )] 
b 

The ¯rst term is called ¯delity as it rewards goodness of ¯t for the given data, while 

the second term is called the shrinkage term as it penalizes deviations of Xb from 

the values X¯0 that we think are reasonable apriori (theory, estimation results from 

other data-sets etc.) The normal equations for the above estimator are given by: 

X 0(Y ¡ X ~̄) + ¸X 0X( ~̄¡ ¯ ¤ ) = 0: 

~Solving for ¯ gives 

^̄ ¸~̄ = (X 0X(1 + ¸))¡1(X 0Y + ¸X 0X¯ ¤ ) = + ¯ ¤ 

1 + ¸ 1 + ¸ 

^Note that setting ¸ = 0 recovers OLS ¯, and setting ¸ ¼ 1 recovers the expert 

estimate ¯¤ . 

The choice of ¸ is often left to practitioners. For estimation purposes ¸ can be 

chosen to minimize the mean square error. This can be achieved by a device called 

cross-validation. 



30 

3.5. Finite-Sample Inference in GM under Normality. For inference purposes, 

we'll need to estimate variance of OLS. We can construct an unbiased estimate of 

¾2(X 0X)¡1 as s2(X 0X)¡1 where 

s 2 e 0 e=(n ¡ K):= bb

Unbiasedness Eµ[s
2jX] = ¾2 follows from 

Eµ[eb0ejX] = Eµ["MX "jX] = Eµ[tr(MX ""
0)jX]b

= tr(MX E[""0jX]) = tr(MX ¾
2I) 

= ¾2tr(I ¡ PX ) = ¾2(tr(In) ¡ tr(PX )) = ¾2(tr(In) ¡ tr(IK )) = ¾2(n ¡ K); 

where we used tr(AB) = tr(BA), linearity of trace and expectation operators, and 

that tr(PX ) = tr((X 0X)¡1X 0X) = tr(IK ). 

We also have to add an additional major assumption: 

GM5. "jX » N(0; ¾2I) Normality 

This makes our model for conditional distribution of Y given X a parametric one and 

reduces the parameter vector of the conditional distribution to µ = (¯; ¾2): 

How does one justify the normality assumption? We discussed some heuristics in 

class. 

Theorem 3.2. Under GM.1-GM.5 the following is true: 
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1. ¯̂jX » N(¯; ¾2(X 0X)¡1), Zj := ( ̄̂ j ¡ ¯ j )=
q

¾2(X 0X)¡1 » N(0; 1).jj 

2. (n ¡ K)s2=¾2 » Â2(n ¡ K). 

^3. s2 and ¯ are independent. 

4. tj := ( ̄̂ j ¡ ¯ j)=se(¯̂j ) » t(n ¡ K) ¼ N(0; 1) for se(¯̂j ) = 
q

s2(X 0X)¡1 
jj ; 

approximation ¼ is accurate when (n ¡ K) ¸ 30. 

3.6. Proof of Theorem 3.2. We will use the following facts: 

(a) a linear function of a normal is normal, i.e. if Z » N(0; ­), then AZ » 

N(0; A­A0), 

(b) if two normal vectors are uncorrelated, then they are independent, 

(c) if Z » N(0; I), and Q is symmetric, idempotent, then Z 0QZ » Â2(rank(Q)), 

(d) if standard normal variable N(0; 1) and chi-square variable Â2(J) are inde-

pendent, then t(J) = N(0; 1)=
p

Â2(J)=J is said to be a Student's t-variable 

with J degrees of freedom. 

Proving properties (a)-(c) is left as a homework. 

Now let us prove each of the claims: 

^(1) ê = MX " and ¯ ¡ ¯ = (X 0X)¡1X 0" are jointly normal with mean zero, since 

a linear function of a normal vector is normal. 

^(3) ê and ¯ are uncorrelated because covariance equals ¾2(X 0X)¡1X 0MX = 0, 

and therefore they are independent by joint normality. s2 is a function of ê, 

^so it is independent of ¯. 
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(2) 

(n ¡ K)s 2=¾2 = ("=¾)0MX ("=¾) » Â2(rank(MX )) = Â2(n ¡ K): 

(4) By properties 1-3, we have 

tj = Zj 

.p
(s2=¾2) » N(0; 1)

.p
Â2(n ¡ K)=(n ¡ K) » t(n ¡ K): 

¤ 

Property 4 enables us to do hypothesis testing and construct con¯dence intervals. 

We have that the event 

tj 2 [t®=2; t1¡®=2] has probability 1 ¡ ®; 

where t® denotes the ®-quantile of t(n ¡ K) variable. Therefore, a con¯dence region 

that contains ¯ j with probability 1 ¡ ® is given by 

I1¡® = [ ̄̂ j § t1¡®=2se(¯̂j )]: 

This follows from event ¯ j 2 I1¡® being equivalent to the event tj 2 [t®=2; t1¡®=2]. 

Also in order to test 

Ho : ¯ j = 0 vs. Ha : ¯ j > 0 

we check if tj = (¯̂j ¡ 0)=se(¯̂j ) ¸ t1¡®, a critical value. It is conventional to select 

critical value t1¡® such that the probability of falsely rejecting the null when the null 

is right is equal to some small number ®, with the canonical choice of ® equal to :01, 
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:05 or :1. Under the null, tj follows a t(n ¡ K) distribution, so the number t1¡® is 

available from the standard tables. 

In order to test 

Ho : ¯ j = 0 vs. Ha : ¯ j 6= 0 

we check if jtj j ¸ t1¡®=2: The critical value t1¡®=2 is chosen such that the probability 

of false rejection equals ®. 

Instead of merely reporting \do not reject" or \reject" decisions it is also common 

to report the p-value { the probability of seeing a statistic that is larger or equal to 

tj under the null: 

Pj = 1 ¡ Pr[t(n ¡ K) · t] 
¯̄
¯ 
t=tj 

for one sided alternatives, and jtj j 

Pj = 1 ¡ Pr[¡t · t(n ¡ K) · t] 
¯̄
¯ 
t=jtj j 

for two-sided alternatives. The probability Pr[t(n ¡ K) · t] is the distribution 

function of t(n ¡ K), which has been tabulated by Student. 

P-values can be used to test hypothetheses in a way that is equivalent to using 

t-statistics. Indeed, we can reject a hypothesis if Pj · ®. 

Example. Temin's Roman Wheat Prices. Temin estimates a distance dis-

count model: 

pricei = ¯ 1 + ¯ 2 ¢ distancei + ² i; i = 1; :::; 6 
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where pricei is the price of wheat in Roman provinces, and distancei is a distance 

from the province i to Rome. The estimated model is 

pricei = ¡1:09 ¡ :0012 ¢ distancei + ²̂ i; R2 = :79; 
(:49) (:0003) 

with standard errors shown in parentheses. The t-statistic for testing ¯ 2 = 0 vs 

¯ 2 < 0 is t2 = ¡3:9 P-value for one sided test is P2 = P [t(4) < ¡3:9] = 0:008: A 90% 

con¯dence region for ¯ 2 is [¡0:0018; ¡0:0005]; it is calculated as [ ̄̂ 2 §t:95(4)¢se(¯̂2)] = 

[:0012 § 2:13 ¢ :0003]. 

^Theorem 3.3. Under GM1-GM5, ¯ is the maximum likelihood estimator and is also 

the minimum variance unbiased estimator of ¯. 

Proof. This is done by verifying that variance of ¯̂ achieves the Cramer-Rao 

lower bound for variance of unbiased estimators. Then, the density of yi at yi = y 

conditional on xi is given by 

1 1 
f(yjxi; ̄ ; ¾2) = p expf¡ (y ¡ x 0 ¯)2 g: 

2¾2 i 
2¼¾2 

Therefore the likelihood function is 
n

1 1 
L(b; ¾2) = 

Y 
f(yijxi; b; ¾

2) = expf¡ (Y ¡ Xb)0(Y ¡ Xb)g: 
(2¼¾2)n=2 2¾2 

i=1 

^It is easy to see that OLS ¯ maximizes the likelihood function over ¯ (check). 
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The (conditional) Cramer-Rao lower bound on the variance of unbiased estimators 

of µ = (¯; ¾2) equals (verify) 

¾2(X 0X)¡1· ·
@2 ln L ¯̄

¯X
¸¸ ¡1 

2 
0 

3 

¡E = 
@µ@µ0 

4 5 : 
0 2¾4=n 

It follows that least squares achieves the lower bound. ¤ 

3.7. OLS Competitors and Alternatives. Part II. When the errors are not 

normal performance of OLS relative to other location estimators can deteriorate dra-

matically. 

Example. Koenker and Bassett (1978). See Handout distributed in class. 

3.8. Omitted Heuristics: Where does normality of " come from? Poincare: 

\Everyone believes in the Gaussian law of errors, the experimentalists because they 

think it is a mathematical theorem, the mathematicians because they think it is an 

experimental fact." 

Gauss (1809) worked backwards to construct a distribution of errors for which 

the least squares is the maximum likelihood estimate. Hence normal distribution is 

sometimes called Gaussian. 

Central limit theorem \justi¯cation": In econometrics, Haavelmo, in his \Proba-

bility Approach to Econometrics", Econometrica 1944, was a prominent proponent 

of this justi¯cation. Under the CLT justi¯cation, each error " i is thought of as a sum 
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of a large number of small and independent elementary errors vij , and therefore will 

be approximately Gaussian due to the central limit theorem considerations. 

If elementary errors vij ; j = 1; 2; ::: are i.i.d. mean-zero and E[v2 ] < 1, then for ij 

large N 
p "PN 

#
j=1 vij

" i = N ¼d N(0; Ev2 );ijN 

as follows from the CLT. 

However, if elementary errors vij are i.i.d. symmetric and E[v2 ] = 1, then forij 

large N (with additional technical restrictions on the tail behavior of vij ) 

1 

"PN vij 
# 

" i = N1¡ 
® 

j=1 ¼d Stable 
N 

where ® is the largest ¯nite moment: ® = supfp : Ejvij jp < 1g: This follows from 

the CLT proved by Khinchine and Levy. The Stable distributions are also called 

sum-stable and Pareto-Levy distributions. 

Densities of symmetric stable distributions have thick tails which behave approxi-

mately like power functions x 7! const ¢ jxj¡® in the tails, with ® < 2. 

Another interesting side observation: If ® > 1, the sample mean 
PN

j=1 vij =N is a 

converging statistic, if ® < 1 the sample mean 
PN

j=1 vij=N is a diverging statistics, 

which has interesting applications to diversi¯cation and non-diversi¯cation. (see R. 

Ibragimov's papers for the latter). 

References: Embrechts et al. Modelling Extremal Events 
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3.9. Testing and Estimating under General Linear Restrictions. We now 

consider testing a liner equality restriction of the form 

H0 : R¯ = r; rankR = p: 

where R is p £ K matirx, and r is p-vector. The assumption that R has full row rank 

simply means that there are no redundant restrictions { i.e there are no restrictions 

that can be written as linear combinations of other restrictions. The alternative is 

H0 : R¯ 6= r: 

This formulation allows us to test a variety of hypotheses. For example, 

R = [0; 1; 0; ::; 0] r = 0 generate restriction ¯ 2 = 0 

R = [1; 1; 0; :::; 0] r = 1 generate restriction ¯ 1 + ¯ 2 = 1 

R = [0p£(K¡p)Ip£p] r = (0; 0; :::)0 generate restriction ¯ K¡p+1 = 0; :::; ̄ K = 0: 

To test H0, we check wether the Wald statistic exceeds a critical value: 

W := (R¯̂ ¡ r)0[ d ¯)]¡1(R ̂V ar(R ̂ ¯ ¡ r) > c®; 

where the critical value c® is chosen such that probability of false rejection when the 

null is true is equal ®. Under GM1-5, we can take 

(3) V ar(R¯̂) = s 2R(X 0X)¡1R0:d
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We have that W0 = (R¯̂ ¡ r)0[¾2R(X 0X)¡1R0]¡1(R¯̂ ¡ r) = N(0; Ip)
2 » Â2(p) and it 

is independent of s2 that satis¯es s2=¾2 » Â2(n ¡ K)=(n ¡ K). We therefore have 

that 
Â2(p)=p

W=p = (W0=p)=(s 2=¾2) » » F (p; n ¡ K);
Â(n ¡ K)=(n ¡ K) 

so c® can be taken as the ®-quantile of F (p; n ¡ K) times p. The statistic W=p is 

called the F-statistic. 

Another way to test the hypothesis would be the distance function test (quasi-

likelihood ratio test) which is based on the di®erence of the criterion function evalu-

ated at the unrestricted estimate and the restricted estimate: 

Qn(¯̂R) ¡ Qn(¯̂); 

^where in our case Qn(b) = (Y ¡ X 0b)0(Y ¡ X 0b)=n, ¯ = arg minb2RK Qn(b) and 

^̄ R = arg min Qn(b) 
b2RK :Rb=r 

It turns out that the following equivalence holds for the construction given in (3): 

DF = n[Qn(¯̂R) ¡ Qn(¯̂)]=s 2 = W; 

so using the distance function test is equivalent to using Wald test. This equivalence 

does not hold more generally, outside of GM model. 

Another major testing principle is the LM test principle, which is based on the 

value of the Lagrange Multiplier for the constrained optimization problem described 
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above. The Lagrangean for the problem is 

L = nQn(b)=2 + ¸ 0(Rb ¡ r): 

The conditions that characterize the optimum are 

X 0(Y ¡ Xb) + R0 ¸ = 0; Rb ¡ r = 0 

Solving these equations, we get 

^̄ R = (X 0X)¡1(X 0Y + R0 ¸̂) = ¯̂ + (X 0X)¡1R0 ¸ ^ 

^Putting b = ¯ R into constraint Rb ¡ r = 0 we get R(¯̂ + (X 0X)¡1R0 ̧̂ ) ¡ r = 0 or 

¸ ^ = ¡[R(X 0X)¡1R0]¡1(R¯̂ ¡ r) 

In economics, we call the multiplier the shadow price of a constraint. In our testing 

problem, if the price of the restriction is too high, we reject the hypothesis. The test 

statistic takes the form: 

^LM = 0[ b ¸)]¡1 ̂  ¸ V ar(^ ¸; 

In our case we can take 

V ar(¸̂) = [R(X 0X)¡1R0]¡1V ar(R¯̂)[R0(X 0X)¡1R]¡1b d

for V ar(R¯̂) = s2R(X 0X)¡1R0 . This construction also gives us the equivalence for d
our particular case 

LM = W: 
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Note that this equivalence need not hold for non-linear estimators (though generally 

we have asymptotic equivalence for these statistics). 

Above we have also derived the restricted estimate: 

^ ^¯ R = ¯ ¡ (X 0X)¡1R0[R(X 0X)¡1R0]¡1(R¯̂ ¡ r): 

When the null hypothesis is correct, we have that 

E[¯̂RjX] = ¯ 

and 

V ar[¯̂RjX] = FV ar(¯̂jX)F 0; F = (I ¡ (X 0X)¡1R0[R(X 0X)¡1R0]¡1R): 

It is not di±cult to show that 

V ar[¯̂RjX] · V ar[¯̂jX] 

^in the matrix sense, and therefore ROLS ¯ R is unbiased and more e±cient than OLS. 

This inequality can be veri¯ed directly; another way to show this result is given below. 

Does this contradict the GM theorem? No. Why? 

It turns out that, in GM model with the restricted parameter f¯ 2 RK : R¯ = rg, 
the ROLS is minimum variance unbiased linear estimator. Similarly, in GM normal 

model with the restricted parameter f¯ 2 RK : R¯ = rg, the ROLS is also the 

minimum variance unbiased estimator. Note that previously we worked with the 

unrestricted parameter space f¯ 2 RK g. 
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The constrained regression problem can be turned into a regression without con-

straints. This point can be made by ¯rst considering an example with restriction 

¯ 1 + ¯ 2 = 1. Write 

Y = X1 ̄  1 + X2 ̄  2 = X1(¯ 1 + ̄  2 ¡ 1) + X2 ̄  2 ¡ X1(¯ 2 ¡ 1) + ² = (X2 ¡ X1)¯ 2 ¡ X1 + ² 

or 

Y ¡ X1 = (X2 ¡ X1)¯ 2 + ²; 

It is easy to check than the new model satis¯es the Gauss-Markov assumptions with 

the parameter space consisting of 

µ = (¯ 2; ¾
2; F²jX ; FX ); 

^where ¯ 2 2 R is unrestricted. Therefore ¯ R2 obtained by applying LS to the last 

display is the e±cient linear estimator (e±cient estimator under normality). The 

^ ^ ^ ^same is true of ¯ R1 = 1 ¡ ¯ R2 because it is a linear functional of ¯ R2. The ROLS ¯ R 

^is therefore more e±cient than the unconstrained linear least squares estimator ¯ 2. 

The idea can be readily generalized. Without loss of generality, we can rearrange 

the order of regressors so that 

R = [R1 R2]; 

where R1 is a p £ p matrix of full rank p. Imposing H0 : R¯ = r is equivalent to 

R1 ̄  1 + R2 ̄  2 = r or ¯ 1 = R¡1(r ¡ R2 ̄  2); so that 1 

Y = X¯1 + X2 ̄  2 + ² 
H
= 0 X1(R

¡1(r ¡ R2 ̄  2)) + X2 ̄  2 + ²;1 
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that is 

Y ¡ X1R
¡1 r = (X2 ¡ X1R

¡1R2)¯ 2 + ²:1 1 

This again gives us a model with a new dependent variable and a new regressor, 

which falls into the previous GM framework. The estimate ¯̂2R as well as the estimate 

¯̂1R = R¡1(r ¡ R2 ̄ 2̂R) are e±cient in this framework. 1 

3.10. Finite Sample Inference Without Normality. The basic idea of the ¯nite-

sample Monte-Carlo method (MC) can be illustrated with the following example. 

Example 1. Suppose Y = X¯ + ², E[²jX] = 0, E[²²0jX] = ¾2I, ² = (² 1; :::²n)0 = 

¾U , where 

(4) U = (U1; :::; Un)jX are i.i.d. with law FU 

where FU is known. For instance, taking FU = t(3) will better match the features of 

many ¯nancial return datasets, than FU = N(0; 1) will. 

Consider testing H0 : ¯ j = ¯j 
0 vs. HA : ¯ j > ¯j 

0 . Under H0 

^̄ j ¡ ¯j 
0 

by H0 ((X 0X)¡1X 0²)j ((X 0X)¡1X 0U)j
(5) tj = = = q

s2(X 0X)¡1 
q

²0MX ² (X 0X)¡1 
q

U 0MX U (X 0X)¡1 
jj n¡K jj n¡K jj 

Note that his statistic nicely cancels the unknown parameter ¾2 . 

P-value for this test can be computed via Monte-Carlo. Simulate many draws of 

the t-statistics under H0: 

(6) ft ¤ ; d = 1; :::; Bg;j;d
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where d enumerates the draws and B is the total number of draws, which needs to 

be large. To generate each draw t ¤ , generate a draw of U according to (4) and plug j;d

it in the right hand side of (5). Then p-value can be estimated as 

B
1 ¤ (7) Pj = 
X 

1ftj;d ¸ tj g;
B 

d=1 

where tj is the empirical value of the t-statistic. The p-value for testing H0 : ¯ j = ¯j 
0 

vs. HA : ¯ j 6 can be estimated as = ¯0 
j 

B
1 ¤ (8) Pj = 
X 

1fjt j ¸ jtj jg:j;dB 
d=1 

Critical values for con¯dence regions and tests based on the t-statistic can be 

obtained by taking appropriate quantiles of the sample (6). 

Example 2. Next generalize the previous example by allowing FU to depend on 

the unknown nuisance parameter °, which true value ° 0 is known to belong to region 

¡. Denote the dependence as FU (°). 

For instance, suppose FU (°) is t-distribution with the \degrees of freedom" param-

eter ° 2 ¡ = [3; 30], which allows to nest distributions that have a wide range of tail 

behavior, from very heavy tails to light tails. The normal case is also approximately 

nested by setting ° = 30. 

Then, obtain P-value for each ° 2 ¡ and denote it as Pj (°). Then use 

sup Pj (°) 
°2¡ 
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for purposes of testing. Since ° 0 2 ¡, this is a valid upper bound on the true P-value 

Pj (° 0). Likewise, one can obtain critical values for each ° 2 ¡ and use the least 

favorable critical value. The resulting con¯dence regions could be quite conservative 

if ¡ is large; however see the last paragraph. 

The question that comes up naturally is: why not use an estimate °̂ of the true 

parameter ° 0 and obtain Pj(°̂) and critical values using MC where we set ° = °̂? This 

method is known as the parametric bootstrap. Bootstrap is simply a MC method for 

obtaining p-values and critical values using the estimated data generating process. 

Bootstrap provides asymptotically valid inference, but bootstrap does not necessar-

ily provide valid ¯nite sample inference. However, bootstrap often provides a more 

accurate inference in ¯nite samples than the asymptotic approach does. 

The ¯nite-sample approach above also works with ¡ that can be data-dependent. 

^Let us denote the data dependent set of nusiance parameters as ¡. If the set ¡̂ 

contains ° 0 with probability 1 ¡ ¯ n, where ¯ n ! 0, we can adjust the estimate of 

p-value to be 

sup Pj (°) + ¯ n: 
°2¡̂ 

In large samples, we can expect that 

sup Pj (°) + ¯ n ¼ Pj (° 0); 
°2¡̂ 
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^provided ¡ converges to ° 0 and ¯ n ! 0. Thus, the ¯nite-sample method can be 

e±cient in large sample, but also retain validity in ¯nite sample. The asymptotic 

method or bootstrap can not (necessarily) do the latter. This sets the methods apart. 

However, as someone mentioned to me, the ¯nite-sample method can be thought of 

as a kind of \fancy bootstrap". 

Example 3. (HW) Consider Temin's (2005) paper that models the e®ect of 

distance from Rome on wheat prices in the Roman Empire. There are only 6 obser-

vations. Calculate the P-values for testing the null that the e®ect is zero versus the 

alternative that the e®ect is negative. Consider ¯rst the case with normal distur-

bances (no need to do simulations for this case), then analyze the second case where 

disturbances follow a t-distribution with 8 and 16 \degrees of freedom". 
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3.11. Appendix: Some Formal Decision Theory under Squared Loss. 

Amemiya (1985) sets up the following formalisms to discuss e±ciency of estimators. 

^ ^1. Let ¯ and ¯¤ be scalar estimators of a scalar parameter ¯. ¯ < (as good as) 

¯¤ if E¯(¯̂ ¡ ¯)2 · E¯ (¯
¤ ¡ ¯)2; 8¯ 2 B 

De¯nition of \better" is tied down to quadratic loss. 

^ ^2. ¯ is better (more e±cient, Â) than ¯¤ if ¯ < ¯¤ and E¯(¯̂ ¡ ¯)2 < E(¯¤ ¡ 

¯)2; 9 ¯ 2 B 

^ ^3. Let ¯ and ¯¤ be vector estimates of vector parameter ¯. ¯ < ¯¤ if for all 

c 2 Rk , c0¯̂ < c0¯¤ (for estimating c0¯). 

^ 0 ^ 0¯¤ 0 ^ 0¯¤4. ¯ Â ¯ if c ¯ Â c for some c 2 Rk and c ¯ < c for all c 2 Rk: 

It should be obvious that De¯nition 3 is equivalent to De¯nition 5. 

5. ¯̂ < ¯¤ if for A¯ ´ E¯(¯̂ ¡ ¯)(¯̂ ¡ ¯)0 and B¯ ´ E¯(¯
¤ ¡ ¯)(¯¤ ¡ ¯)0 , A¯ ¡ B¯ 

is semi-negative de¯nite 8 ¯ 2 B, or A¯ · B¯ in the matrix sense. 

6. ¯̂ is a best in a class of estimators if there is no better estimator in this class. 
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4. Estimation and Basic Inference in Large Samples 

A good reference for this part is Newey's lecture note that is posted on-line. Below 

I only highlight the main issues that we have discussed in class. 

4.1. The Basic Set-up and Their Implications. In large sample we can conduct 

valid inference under much more general conditions than the previous GM model 

permited. 

One su±cient set of conditions we can work with is the following: 

L1 yt = x0 
t ̄  + et; t = 1; :::; n 

L2 Eetxt = 0; t = 1; :::; n 

L3 X 0X=n !p Q ¯nite and full rank 
p

L4 X 0e= n !d N(0; ­), where ­ is ¯nite and non-degenerate. 

Discussion: 

1) L1 and L2 imply that ¯ is the parameter that describes the best linear ap-

^proximation of the conditional expectation function E[ytjxt]. Under L1-L4, OLS ¯ 

turns out to be a consistent and asymptotically (meaning approximately) normally 

distributed estimator of ¯. 

2) We can decompose 

et = at + " t; 
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where " t = yt ¡ E[ytjxt] and 

at = E[ytjxt] ¡ x 0 ¯: t

The error is therefore the sum of the \usual" disturbance " t, de¯ned as a deviation of 

yt from the conditional mean, and the approximation (speci¯cation) error at, de¯ned 

as the error resulting from using linear functional form in place of the true function 

E[ytjxt]. In the previous GM framework, we have assumed away the approximation 

error. In the present framework, we can \a®ord" it. We can explicitly acknowledge 

that we merely estimate an approximation to the true conditional mean function, and 

we can explicitly account for the fact that approximation error is a non-trivial source 

of heteroscedasticity (why?) that impacts the variance of our estimator. 

3) L3 is merely an analog of the previous identi¯cation condition. It also requires 

that a product of regressors fxtx
0 ; t = 1; :::ng satisfy a LLN, thereby imposing some t

stability on them. This condition can be relaxed to include trending regressors (see 

e.g. Newey's handout or Amemiya's Advanced Econometrics). 

4) L4 requires the sequence fxtet; t = 1; :::; ng to satisfy a CLT. This condition is 

considerably more general than the previous assumption of normality of errors that 

we have made. In large samples, it will lead us to the estimation and inference results 
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that are similar to the results we have obtained under normality. 

^Proposition 4.1. Under L1-L4, ¯ !p ¯. 

^We have that ¯ approaches ¯ as the sample size increases. Obviously, for consis-

tency, we can replace L4 by a less stringent requirement X 0e=n !p 0. 

p
Proposition 4.2. Under L1-L4, n(¯̂ ¡ ¯) !d N(0; V ), V = Q¡1­Q¡1 . 

^The results suggest that in large samples ¯ is approximately normally distributed 

with mean ¯ and variance V=n: 

^̄ ¼d N(¯; V=n): 

^Proposition 4.3. Under L1-L4, suppose there is V ! V , then 

tj := ( ̄̂ j ¡ ¯ j )=s:e(¯̂j) := ( ̄̂ j ¡ ¯ j )=
q

V̂jj =n !d N(0; 1): 

and if R¯ = r for R having full row rank p 

W = (R¯̂ ¡ r)0[R( ^ ¯ ¡ r) !d Â
2(p):V =n)R0]¡1(R ̂

In large samples the appropriately constructed t-statistic and W -statistic are ap-

proximately distributed as the standard normal variable and a chi-square variable 

with p degrees of freedom; that is t ¼d N(0; 1) and W ¼d Â
2(p). 
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Basic use of these results is exactly the same as in the ¯nite-sample case, except 

now all the statement are approximate. For example, under the null hypothesis, a 

t-statistic satis¯es tj !d N(0; 1), and that implies 

lim Pr[tj < c] = Pr[N(0; 1) < c] = ©(c); 
n!1 

for every c, since © is continuous. In ¯nite, large samples, we merely have 

Pr[tj < c] ¼ ©(c); 

where quality of approximation may be good or poor, depending on a variety of 

circumstances. 

Remark: Asymptotic results for restricted least squares, which is a linear trans-

formation of the unrestricted OLS, and other test statistics (e.g. LM) readily follows 

from the results presented above. 

The main tools we will use to prove the results are the Continuous Mapping The-

orem and the Slutsky Theorem. The underlying metric spaces in these results are 

¯nite-dimensional Euclidian spaces. 

Lemma 4.1 (CMT). Let X be a random element, and x 7! g(x) be continuous at 

each x 2 D0, where X 2 D0 with probability one. Suppose that Xn !d X, then 

g(Xn) !d g(X); if Xn !p X, then g(Xn) !p g(X). 
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The proof of this lemma follows from an application of an a.s. representation 

theorem and then invoking the continuity hypothesis. The following lemma is a 

corollary of the continuous mapping theorem. 

Lemma 4.2 (Slutsky Lemma). Suppose that matrix An !p A and vector an !p a, 

where matrix A and vector a are constant. If Xn !d X, then AnXn + an !d AX + a. 

Proof of Proposition 1: Conditions L4 and L3 imply respectively that 

p p
(2) X 0 e=n ! 0; X 0X=n ! Q: 

Then, by nonsingularity of Q, the fact that the inverse of a matrix is a continuous 

function of the elements of the matrix at any nonsingular matrix, and the Slutsky 

Lemma it follows that 

p
¯̂ = ¯ + (X 0X=n)¡1X 0 e=n ! ¯ + Q¡1 ¢ 0 = ¯: 

Proof of Proposition 2: Conditions L4 and L3 imply respectively that 

p d p
(2) X 0 e= n ! N(0; ­); X 0X=n ! Q: 

By the Slutsky Lemma it follows that 

p p d
n(¯̂ ¡ ¯) = (X 0X=n)¡1X 0 e= n ! Q¡1N(0; ­) = N(0; Q¡1 ­Q¡1): 
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p
´1=2 p^ ^Proof of Proposition 3: By V ! V; Vjj > 0; and the CMT, 

³ 
Vjj =Vjj ! 1: 

It follows by the Slutsky Theorem that 

p1=2 d
³ 
¯̂j ¡ ¯ j 

´ 
= [Vjj ] = (Vjj =V̂jj )

1=2 n(¯̂j ¡ ¯ j )=
p

Vjj ! 1 ¢ N(0; 1) = N(0; 1): 

Let § = RV R0 . Matrix § is nonsingular by R having rank p and nonsingular-
p

§¡1=2ity of V , so by the CMT, ^ ! §¡1=2 . Also, by the Slutsky Lemma Zn = 
p d

§b¡1=2R n 
³ 
¯̂ ¡ ¯ 

´ 
! Z = §¡1=2N(0; §) = d N(0; I): Then by the CMT, W = 

Zn
0 Zn !d Z

0Z = d Â
2(p). 

4.2. Independent Samples. Here we consider two models: 

IID Model: Suppose that (a) L1 and L2 hold, (b) vectors (yt; xt) are independent 

and identically distributed across t, (c) 

­ = V ar[xtet] = E[et 
2 xtxt

0 ] 

is ¯nite and non-degenerate (full rank) and that 

Q = E[xtx 0 t] 

is ¯nite and is of full rank. 
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It should be emphasized that this condition does not restrict in any away the 

relationship between yt and xt; it only requires that the joint distribution function of 

(yt; xt) does not depend on t and that there is no dependence of data points across t. 

This model allows for two sources of heteroscedasticity in the error et = " t + at 

{ one is the heteroscedasticity of " t and another is the heteroscedasticity of the ap-

proximation error at = E[yjxt] ¡ x0 ̄ . By heteroscedasticity we mean that E[e2jxt]t t 

depends on xt. 

Example: Recall the Engle curve example discussed at some point, where " t was 

clearly heteroscedastic. Therefore, et should be heteroscedastic as well. Many regres-

sion problems in economics have heteroscedastic disturbances. 

Example: We saw in the wage census data that at 6= 0 for basic functional forms. 

Therefore et should be heteroscedastic due to at = 0. 6

Theorem 4.1. The conditions of the iid model imply that L1-L4 hold with ­ and Q 

de¯ned above. Therefore the conclusions of Propositions 1-3 hold as well. 

Proof: This follows from Khinchine LLN and the multivariate Lindeberg-Levy 

CLT. 
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A consistent estimator (called heteroscedastiticy robust estimator) of variance V 

is given by: 

^ Q̂¡1 ^Q̂¡1 ^ 2 0 ^V = ­ ; ­ = En[et xtxt]; Q = X 0X=n: 
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Theorem 4.2. The conditions of the iid model and additional assumptions (e.g. 

bounded fourth moments of xt) imply that ­̂ !p ­ and Q̂ !p Q, so that V̂ !p V . 

^Proof: Consistency Q !p Q follows by the Khinchine LLN, and consistency of 

^ ­ !p ­ can be shown as follows. Consider the scalar case to simplify the notation. 

We have that 
2 2 2 ê = e ¡ 2(¯̂ ¡ ¯)0 xtet + ( ̄̂ ¡ ¯)2 x :t t t 

Multiply both sides by x2 
t and average over t and get 

2 2 2 2 3 4En[ê x ] = En[e x ] ¡ 2(¯̂ ¡ ¯)En[etx ] + ( ̄̂ ¡ ¯)2En[x ]:t t t t t t 

2 2 2 2 4 4 3 3Then En[e x ] !p E[e x ], En[x ] !p E[x ], and En[etx ] !p E[etx ] by Khinchine t t t t t t t t 

LLN, since E[xt 
4] is ¯nite by assumption, and E[etxt 

3] is ¯nite by 

2 2 2 4jE[etxtx ]j2 · E[e x ]E[x ]t t t t 

2 2 4by Cauchy-Schwartz inequality and by the assumed ¯niteness of E[e x ] and E[x ].t t t 

^Using the consistency of ¯, the facts mentioned, and CMT, we get the consistency. 

¤: 

Homoscedastic IID Model: In addition to conditions (a)-(c) of the iid model, 

suppose that E[etjxt] = 0 and E[e2jxt] = ¾2, then V ar[e2jxt] = ¾2, so that we have t t 

the simpli¯cation 

­ = ­0 := ¾2E[xtxt
0 ]: 
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In this model, there is no approximation error, i.e. et = " t, and there is no 

heteroscedasticity. This model is a Gauss-Markov model without imposing normality. 

Theorem 4.3. In the homoscedastic iid model, L1-L4 hold with ­0 = ¾2E[xtxt
0 ] and 

Q = E[xtx
0 
t], so that V = V0 := ¾2Q¡1 . 

Proof. This is a direct corollary of the previous result. 

For the homoscedastic iid model, a consistent estimator (non-robust estimator) of 

variance V is given by: 

V̂0 = s 2(X 0X=n)¡1 

^Theorem 4.4. The conditions of the homoscedastic iid model imply that V0 !p V0. 

p
Proof. The matrix Q¡1 is consistently estimated by (X 0X=n)¡1 by X 0X=n ! Q, 

2 "0 ̂ = y ¡ X ^holding by LLN, and by CMT. We have that s = ^"=(n ¡ K); where "̂ ¯. 
p p

It follows from X 0"=n ! 0 and X 0X=n ! Q that 

(4) 
2s = n[ ]

n¡K 
"0" [ + 2(¯ ¡ ^̄)0 
n (X

0" )+
n (¯ ¡ ^̄)0 (X

0X )
n (¯ ¡ ^̄)] !p ¾2; 

(CMT ) 

# #p #p #p #p #p 

1 ¾2 0 0 0 Q 

(LLN) (OLS) (LLN) (OLS) (LLN) 

p
where (OLS) refers to consistency of the OLS estimator. Thus, by CMT,s2(X 0X=n)¡1 ! 

¾2Q¡1: ¤. 
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Comment: Under heteroscedasticity V =6 V0, and V may be larger or smaller 

than V0. Convince yourself of this. In practice, V is often larger than V0. 

4.3. Dependent Samples. In many macro-economic and ¯nancial settings, time 

series are serially dependent (dependent across t). Think of some examples. 

There are many ways to model the dependence. You will see some parametric 

models in 14.382 in connection to GLS. Here we describe basic non-parametric models. 

In what follows it will be convenient to think of the data zt = (yt; x
0 
t)

0; t = 1; :::; n 

as a subset of some in¯nite stream fztg = fzt; t = §1; §2; :::g:. 
fztg is said to be stationary, if for each k ¸ 0, distribution of (zt; :::; zt+k) equals the 

distribution of (z1; :::; z1+k), i.e. does not depend on t. As a consequence, we have e.g. 

mean and covariance stationarity: E[zt] = E[z1] for each t and E[ztz
0 ] = E[z1z

0 ]t+k 1+k

for each t. 

(a) Mixing. Mixing is a fairly mathematical way of thinking about temporal 

dependence. 

Letfhtg be a stationary process. De¯ne for k ¸ 1 

®k = sup 
¯̄
¯P (A \ B) ¡ P (A)P (B) 

¯̄
¯

A;B 

where sup is taken over events A 2 ¾(h0; h¡1; h¡2; :::; ) and B 2 ¾(hk; hk+1; :::). A 

simple way to think of these sigma-¯elds as information generated by variables en-

closed in brackets. fhtg is said to be strongly mixing or alpha mixing if ®k ! 0 as 

k ! 1. If the data are i.i.d. ®k = 0 for each k. 
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The mixing condition states that dependence between blocks of data separated by 

k units of time dissipates as k increases. Many parametric models have been shown 

to be mixing under some regularity conditions. 

Lemma 4.3 (An Ergodic LLN). If fhtg is a stationary strongly mixing with a ¯nite 

mean E[ht], then En[ht] !p E[ht]. 

Remark. There is a more general version of this LLN, called Birkho® ergodic 

theorem.8 

Lemma 4.4 (Gordin's CLT). If fhtg is a stationary strongly mixing process, with 
±=(2+±)

E[ht] = 0, 
P1 ® < 1, Ekhtk2+± < 1, then k=1 k 

n pX 
ht = n !d N(0; ­); 

t=1 

where 

(9) 
n n¡1 1p n ¡ k 0 0­ = lim V ar(

X 
ht = n) = lim 

³ 
­0 + 

X 
(­k + ­k) 

´ 
= ­0 + 

X
(­k + ­k) < 1; 

n n n 
t=1 k=1 k=1 

where ­0 = Eh1h
0 and ­k = Eh1h

0 
1 1+k. 

8See e.g. http://mathworld.wolfram.com/Birkho®sErgodicTheorem.html 

http://mathworld.wolfram.com/Birkho�sErgodicTheorem.html
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The restriction on the rate of mixing and the moment condition imply the covari-

ances sum up to a ¯nite quantity ­; see remark below. If this happens, the series is 

said to be weakly-dependent. 

It is helpful to think of a su±cient condition that implies covariance summability: 

as k ! 1 it su±ces to have 

­k=k
¡c ! 0; for c > 1: 

Covariances should decay faster than 1=k. If this does not happen, then the series is 

said to have long memory. High frequency data in ¯nance often is thought of as having 

long memory, because the covariances decrease very slowly. The asymptotic theory 

under long memory is su±ciently di®erent from the asymptotic theory presented here. 

[Reference: H. Koul.] 

Remark. In Gordin's theorem, covariance summability follows from Ibragimov's 

mixing inequality for stationary series (stated here for the scalars): 

1 j­kj = jEhtht+kj · ®1¡° [E[ht]
p]1=p[E[ht]

q]1=q; 
1
+ = ° 2 (0; 1):k p q 

Setting p = 2 + ±, we see that the covariance summability 
P1 

k=¡1 j­kj < 1 follows 

from the restriction made on the mixing coe±cients. 

Theorem 4.5. Suppose that series f(yt; xt)g is stationary and strongly mixing and 

that L1 and L2 hold. Suppose that fh~tg = fxtx
0 g has ¯nite mean, then L3 holds with t
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Q = E[xtx
0 ]. Suppose that fhtg = fxtetg satis¯es Gordin's conditions, then L4 holds t

with ­ of the form stated above. 

Proof: The result follows from the previous two theorems, and from the de¯nition 

of mixing. 

The formula above suggests the following estimator for ­: 

L¡1
L ¡ k^ ^ 

X 
(^ 0(10) ­ = ­0 + ­k + ­̂ 

k);L 
k=1 

1where ­̂ 
0 = En[hth

0 ] = 1 Pn hth
0 and ­̂ 

k = En[hth
0 ] = 

Pn¡k hth
0 
t+k. Undert n t=1 t t+k n¡k t=1 

certain technical conditions and conditions on the truncation lag, such as L=n ! 0 

and L ! 1, the estimator was shown to be consistent. 

The estimator V̂ = Q̂¡1­̂Q̂¡1 with ­̂ of the form stated above is often called a 

HAC estimator (\heteroscedasticity and autocorrelation consistent" estimator). Un-

der some regularity conditions, it is indeed consistent. For the conditions and the 

proof, see Newey and West. 

(b) Martingale di®erence sequences (MDS). Data can be temporally de-

pendent but covariances ­k can still be zero (\all-pass" series), simplifying ­ above 

to ­0. MDS sequences is one example where this happens. MDS are important in 

connection with the rational expectations (cf. Hansen and Singleton) as well as the 
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e±cient market hypothesis (cf. Fama). A detailed textbook reference is H. White, 

Asymptotic Theory of Econometricians. 

Let ht be an element of zt and It = ¾(zt; zt¡1; :::): The process fhtg is a martingale 

with respect to ¯ltration It¡1 if E[htjIt¡1] = ht¡1. The process fhtg is martingale 

di®erence sequence with respect to It¡1 if E[htjIt¡1] = 0. 

Example. In Hall's model of representative consumer with quadratic utility and 

rational expectations, we have that 

E[ytjIt¡1] = 0; 

where yt = ct ¡ct¡1 and It is the information available at period t. That is, a rational, 

optimizing consumer sets his consumption today such that no change in the mean of 

subsequent consumption is anticipated. 

Lemma 4.5 (Billingsley's Martingale CLT). Let fhtg be a martingale di®erence se-
p

quence that is stationary and strongly mixing with ­ = E[hth
0 
t] ¯nite. Then nEn[ht] !d 

N(0; ­). 

The theorem make some intuitive sense, since ht's are identically distributed and 

also are uncorrelated. Indeed, E[hth
0 
t¡k] = E[E[hth

0 
t¡kjIt¡k]] = E[E[htjIt¡k]h

0 
t¡k] = 0 

for k ¸ 1, since E[htjIt¡k] = E[E[htjIt¡1]jIt¡k] = 0. There is a nice generalization of 

this theorem due to McLeish. 
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Theorem 4.6. Suppose that series f(yt; xt)g is stationary and strongly mixing. Fur-

ther suppose that (a) = ¡ x0 ̄  is a martingale di®erence sequence with re-et yt t 

spect to the ¯ltration It¡1 = ¾((et¡1; xt)
0; (et¡2; xt¡1)

0; :::); that is E[etjIt¡1] = 0 , 
2 0 0(b) ­ = E[et xtxt] is ¯nite, and (c) Q = E[xtxt] is ¯nite and of full rank. Then 

L1-L4 hold with ­ and Q de¯ned above. Therefore, conclusions of Propositions 1-3 

also hold. 

Proof. We have that E[etjxt] = E[E[etjIt¡1]jxt] = 0, which implies L1 and L2. 

We have that En[xtx
0 
t] !p Q = E[xtx

0 
t] by the Ergodic LLN, which veri¯es L3. We 

p
have that nEn[etxt] !d N(0; ­) with ­ = E[et 

2xtxt
0 ] by the martingale CLT, which 

veri¯es L4. ¤ 

Remark 4.1. We can use the same estimator for ­ and Q as in the i.i.d. case, 

2 0 0^­ = En[ê ]; Q = En[xtx ]:t xtxt t
b

Consistency of ­b follows as before under the assumption that E[kxtk4] < 1. The 

proof is the same as before except that we should use the Ergodic LLN instead of the 

^usual LLN for iid data. Consistency of Q also follows by the ergodic LLN. 

Example. In Hall's example, 

E[yt ¡ x 0 ¯ 0jxt] = 0;t 
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for ¯ 0 = 0 and xt representing any variables entering the information set at time t¡1. 

Under the Hall's hypothesis, 

p
n(¯̂ ¡ ¯ 0) !d N(0; V ); V = Q¡1 ­Q¡1; ¯ 0 = 0 

2 0 0where ­ = E[y xtx ] and Q = Extx Then one can test the Hall's hypothesis by t t t. 

using the Wald statistic: 

p p
W = n(¯̂ ¡ ¯ 0)

0V ¡1 n(¯̂ ¡ ¯ 0);b

where Vb = Q¡1 Q¡1 for ­b and Qb de¯ned above. b ­b b
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