GMM Estimation in Stata

Econometrics I

Ricardo Mora

Department of Economics Universidad Carlos III de Madrid Master in Industrial Economics and Markets

2 Using the gmm command

Several linear examples

Motivation

Using the gmm command Several linear examples Nonlinear GMM Summary

Motivation

э

Stata and GMM

- Stata can compute the GMM estimators for some linear models:
 - regression with exogenous instruments using ivregress (ivreg, ivreg2 for Stata 9)
 - \bullet demand function using 2SLS

ivreg 2sls q demand_shiftrs (p=supply_shiftrs), vce(robust)

 \bullet demand function using GMM

ivreg gmm q demand_shiftrs (p=supply_shiftrs)

• with heteroskedasticity, the GMM estimator will be more efficient than the 2SLS estimator

- 2 xtabond for dynamic panel data
- since Stata 11, it is possible to obtain GMM estimates of non-linear models using the gmm command

Using the gmm command

æ

▲ 同 ▶ ▲ 国 ▶

Using the gmm command

- the command gmm estimates parameters by GMM
- you can specify the moment conditions as substitutable expressions
- a substitutable expression in Stata is like any mathematical expression, except that the parameters of the model are enclosed in braces {}
- alternatively, you may use command program to create a program that you can use as an argument
- we are going to focus on examples using substitutable expressions

The syntax of gmm with instruments

• If E[ze(b)] = 0 where z is a $q \times 1$ vector of instrumental variables and e(b) is a scalar function of the data and the parameters beta

gmm (e(b)) , instruments(z_list) options

- by default, it computes the two-step estimator with identity matrix in the first step
- use onestep option to get the one-step estimator and igmm to get the iterative estimator
- use vce(robust) to get sandwich standard errors
- use winitial(wmtype) and wmatrix(witype) to change weight-matrix computations
- gmm admits if, in, and weight qualifiers

More general moment conditions (1)

- in some applications we cannot write the moment conditions as the product of a residual and a list of instruments
- suppose you have two general moment conditions

 $E[h_1(b)] = 0$ $E[h_2(b)] = 0$

gmm $(h_1(b)) (h_2(b))$, igmm

 computes the iterative GMM estimator imposing in the sample the two moment conditions

More general moment conditions (2)

• instruments may vary with error terms

 $E[z_1e_1(b)] = 0$ $E[z_2e_2(b)] = 0$

gmm $(e_1(b))$ $(e_2(b))$, instruments $(1:z_1)$ instruments $(2:z_2)$ nolog

- this computes the twostep GMM estimator without adding information on the first step
- you can use this syntax to estimate supply and demand functions simultaneously

Several linear examples

æ

< 🗇 > <

Linear regresssion

Assume that

depvar
$$=eta_0+eta_1x1+eta_2x2+v$$

so that
$$E[v|x1,x2] = 0$$

Then

$$E [(depvar - (\beta_0 + \beta_1 x 1 + \beta_2 x 2))] = 0$$

$$E [x1(depvar - (\beta_0 + \beta_1 x 1 + \beta_2 x 2))] = 0$$

$$E [x2(depvar - (\beta_0 + \beta_1 x 1 + \beta_2 x 2))] = 0$$

• The gmm command:

gmm (depvar-x1*{b1}-x2*{b2}-{b3}), instruments(x1 x2) nolog

 equivalently (names of the variables will be displayed in the output) and simpler to write:

gmm (depvar-{xb:x1 x2}-{b0}), instruments(x1 x2) nolog

Estimating OLS with gmm command

. regress mpg gear ratio turn, r Number of obs = 74 Linear regression F(2, 71) = 47.92 Prob > F = 0.0000 R-squared = 0.5483 Root MSE = 3.9429 Robust mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval] gear_ratio | 3.032884 1.533061 1.98 0.052 -.023954 6.089721 turn | -.7330502 .1204386 -6.09 0.000 -.9731979 -.4929025 cons | 41.21801 8.5723 4.81 0.000 24.12533 58.31069 gmm (mpg - {b1}*gear ratio - {b2}*turn - {b0}), instruments(gear ratio turn) nolog Final GMM criterion Q(b) = 3.48e-32 GMM estimation Number of parameters = 3 Number of moments = 3 Number of obs = 74 Initial weight matrix: Unadjusted GMM weight matrix: Robust Robust Coef. Std. Err. z P>|z| [95% Conf. Interval] /b1 | 3.032884 1.501664 2.02 0.043 .0896757 5.976092 /b2 | -.7330502 .117972 -6.21 0.000 -.9642711 -.5018293 /b0 | 41.21801 8.396739 4.91 0.000 24.76071 57.67532 Instruments for equation 1: gear ratio turn cons

Ricardo Mora GMM estimation

12

2SLS and gmm

gmm (depvar-{xb:x1 x2}-{b0}), instruments(z1 z2 z3) onestep

ivregress 2sls mpg gear ratio (turn = weight length headroom)

	Number of obs = 74 Wald chi2(2) = 90.94 Prob > chi2 = 0.0000 R-squared = 0.4656 Root MSE = 4.2007		
mpg Coef. Std. Err. z P> z	[95% Conf. Interval]		
turn -1.246426 .2012157 -6.19 0.000 gear_ratio 3146499 1.697806 -0.19 0.853 _cons 71.66502 12.3775 5.79 0.000	-1.6408018520502 -3.642288 3.012988		
Instrumented: turn Instruments: gear_ratio weight length headroom			
. gmm (mpg - (b1)*turn - (b2)*gear_ratio - (b0)), instruments(gear_ratio weight length headroom)			
Step 1: freation 0: GB86 criterion Q(b) = 475.42283 Teration 1: GB86 criterion Q(b) = .16000633 Teration 2: GB86 criterion Q(b) = .16100633			
GHM estimation			
	Number of obs = 74		
Robust Coef. Std. Err. z P> z	[95% Conf. Interval]		
/b1 -1.246426 .1970566 -6.33 0.000 /b2 3146499 1.863079 -0.17 0.866 /b0 71.66502 12.68722 5.65 0.000	-1.6326498602019 -3.966217 3.336917		
Instruments for equation 1: gear ratio weight length headroom cons			

Ricardo Mora

13

onestep

GMM estimation

Linear GMM and gmm

gmm (depvar-{xb:x1 x2}-{b0}), instruments(z1 z2 z3) wmatrix(robust)

. ivregress gmm mpg gear ratio (turn = weight length headroom)

Instrumental variables (GMM) regression GMM weight matrix: Robust	Number of obs = 74 Wald chi2(2) = 97.83 Prob > chi2 = 0.0000 R-squared = 0.4769 Root MSE = 4.1559		
Robust mpg Coef. Std. Err. z			
turn -1.208549 .1882903 -6.42 gear_ratio .130328 1.75499 0.07 _cons 68.89218 12.05955 5.71	0.000 -1.5775918395071 0.941 -3.30939 3.570046 0.000 45.25589 92.52847		
Instrumented: turn Instruments: gear_ratio weight length headroom			
. gmm (mpg - (bl)*turn - (b2)*gear_ratio - (b0)), instruments(gear_ratio weight length headroom) wmatrix(robust) nolog Final GMM criterion Q(b) = .0074119			
GBMM estimation			
Number of parameters = 3 Number of moments = 5 Initial weight matrix: Unadjusted GMM weight matrix: Robust	Number of obs = 74		
Robust Coef. Std. Err. z	P> z [95% Conf. Interval]		
/b1 -1.208549 .1882903 -6.42 /b2 .130328 1.75499 0.07 /b0 68.89218 12.05955 5.71	0.000 -1.5775918395071 0.941 -3.30939 3.570046		
Instruments for equation 1: gear ratio weight	length headroom cons		

Instruments for equation 1: gear_ratio weight length headroom _cons

A B > A B > A

Nonlinear GMM

æ

< D > < P > < P > < P >

Exponential regression with exogenous regressors

- exponential regression models are frequently encountered in applied work
- they can be used as alternatives to linear regression models on log-transformed dependent variables
- when the dependent variable represents a discrete count variable, they are also known as Poisson regression models

$$E[y|x] = exp(x\beta + \beta_0)$$

- Moment conditions: $E[x(y exp(x\beta + \beta_0))] = 0$
- this is equivalent to $E[x(y-exp(x\beta)+\gamma)]=0$

gmm (depvar-exp({xb:x1 x2})+{b0}), instruments(x1 x2) wmatrix(robust) ¹⁶

IV Poisson regression and others

• suppose now
$$E[z(y - exp(x\beta) + \gamma)] = 0$$

gmm (depvar-exp({xb:x1 x2})+{b0}), instruments(z1 z2 z3) wmatrix(robust)

- the structure of the moment conditions for some models is too complicated for the syntax used thus far
- you should in these cases use the moment-evaluator program syntax (see help gmm)

- Stata can compute the GMM estimators for some linear models:
 - regression with exogenous instruments using ivregress (ivreg, ivreg2 for Stata 9)
 - 2 xtabond for dynamic panel data
- since Stata 11, it is possible to obtain GMM estimates of non-linear models using the gmm command

MIT OpenCourseWare https://ocw.mit.edu

14.382 Econometrics Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.