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Stationarity, Lag Operator, ARMA, and Covariance Structure

Introduction

History – popular in early 90s, making comeback now.
The main difference between time series econometrics and cross-section is in dependence structure. Cross-

section econometrics mainly deals with i.i.d. observations, while in time series each new arriving observation
is stochastically depending on the previously observed. The dependence is our best friend and a great enemy.
On one side, the dependence screw up your inferences: the regular (ordinary) Central Limit Theorem should
be corrected to hold for dependent observations. That bring us to the task of correcting our procedures for
dependence. On the other side, the dependence allow us to do more by exploiting it. For example, we can
make forecasts (which are almost non-sense in cross-section).

Some topics may sounds counter-intuitive for you at first (if you are cross-section minded). For example,
if you are working with very persistent time series, your estimates can be severely biased even if the exclusion
restriction is satisfied. But time-to-time you can recover a stochastic trend super-consistently even when the
exclusion restriction is not exactly satisfied. I personally find it amusing:)

Can roughly divide time series into macro and finance related stuff. Macro Time series mostly focuses on
means. Macro limited by small number of observations available over long horizon. A typical data set has
at best 20 years of monthly or 40 years of quarterly data, which sum up to less than 300 observations. This
allows us to study linear relations between variables or model means. Financial data usually high-frequency
over short period of time. This allows us to model volatility and higher moments.

Outline

Can divide course into two main parts:

1. Classics
stationary nonstationary

Univariate ARMA unit root
Multivariate VARMA cointegration

2. DSGE

• simulated GMM

• ML

• Bayesian

Goals

The main objective of this course is to develop the skills needed to do empirical research in fields operating
with time series data sets. The course aims to provide students with techniques and receipts for estimation
and assessment of quality of economic models with time series data. Special attention will be placed on
limitations and pitfalls of different methods and their potential fixes. The course will also emphasize recent
developments in Time Series Analysis and will present some open questions and areas of ongoing research.
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Problem Sets

Will have an empirical part – requires programming. Use whatever language you prefer. I recommend
Matlab and discourage Stata. There will be a session devoted to Intro to MatLab. You need not write
your programs from scratch. You can freely download programs from the web, but make sure you use them
correctly and cite them. Working in groups is encouraged, but you should write your own solutions.

The final exam will be in a take-home format.

ARMA Processes

Stationarity

We need what we have observed to be stable, in some sense, so that we can make inferences and statements
about the future.

Definition 1. White noise is a sequence of random variables {et} such that Eet = 0, Eetes = 0, Ee2
t = σ2

Definition 2. A process, {yt}, is strictly stationary if for each k, t and n, the distribution of {yt, ..., yt+k}
is the same as the distribution of {yt+n, ..., yt+k+n}
Definition 3. {yt}, is 2nd order stationary(or weakly stationary, or simply stationary) if Eyt, Ey2

t , and
cov(yt, yt+k) do not depend on t

Examples of non-stationary

Example 4. Break:

yt =

{
β + et t ≤ k

β + λ + et t > k

Example 5. Random Walk (also known as unit root process)

yt = yt−1 + et

One can notice that

V ar(yt) = V ar(yt 1) + V ar(et) > V ar(y− t−1)

Lag operator and operations with it

Definition 6. Lag operator Denoted L. Lyt = yt−1.

1) The lag operator can be raised to powers, e.g. L2yt = yt 2. We can also form polynomials of it−

a(L) = a0 + a1L + a2L
2 + ... + apL

p

a(L)yt = a0yt + a1yt ...−1 + a2yt +−2 + apyt−p

3) Lag polynomials can be multiplied. Multiplication is commutative, a(L)b(L) = b(L)a(L).

4) Some lag polynomials can be inverted. We define (1− ρL)−1 by the following equality:

(1− ρL)(1− ρL)−1 ≡1 (1)

The statement is: If |ρ| < 1, then
∞

(1− ρL)−1 =
∑

ρiLi.
i=0
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First we need to check that the infinite sum is a valid definition of an operator from weakly stationary
sequences (in L2 sense)∑ to weakly stationary sequences. This mean that if xt is weakly stationary, then
for all t a sequence ( J

i=0 ρiLi)x 2
t converges to a limit in L space as J → ∞ and the result is a weakly

stationary sequence. If |ρ| < 1, one can check that yt,J = ( J i i 2
i=0 ρ L )xt is a Cauchy sequence in L . That is,

E(y − y )2 → 0 as min(j, J) →∞. Given that L2
t,j t,J is a complete space (all Cauchy sequences converge),

there exists a limit, call it
2

zt: yt,J →L zt. Then we hav

∑

e to check that zt is weakly stationary(which is
trivial).

Now we have to check the equality (1):
∞ ∞ ∞

(1− ρL)
∑

ρiLi =
i=0

∑
ρiLi

i=0

−
∑

ρiLi

i=1

=ρ0L0 = 1

For higher order polynomials, we can invert them by factoring, using the formula for (1−ρL)−1 (assuming
that the roots are outside the unit circle), and then rearranging, for example:

1− a L− a L2
1 2 =(1− λ1L)(1− λ2L) , |λi| < 1

(1− a 2
1L− a2L )−1 =(1− λ1L)−1(1− λ2L)−1

∞
=(

∑ ∑∞
λi Li)( λi i

1 2L )
i=0 i=0

∞
=

∑
Lj

(∑j
j kλk

1λ2
−

j=0 k=0

)

Another (perhaps more easy) way to approach the same problem is do a partial fraction decomposition

1 a b
= +

(1− λ1x)(1− λ2x) 1− λ1x 1− λ2x

⇒
λ

a = 1 λ
, b = 2

λ1 − λ2 λ2 − λ1

∑∞ ∑∞
a−1(L) = a λi

1L
i + b λi

2L
i

i=0 i=0

This trick only works when the λi are unique. The formula is slightly different otherwise.
Note: the λi are the inverse of the roots of the lag polynomials. To invert a polynomial, we needed

|λi| < 1, i.e., the roots of the polynomial are outside of unit circle.

Simple Processes

Autoregressive (AR)

AR(1): yt = ρyt−1 + et , |ρ| < 1
(1− ρL)yt = et

AR(p): a(L)yt = et, where a(L) is order p

Moving average (MA)

MA(1): yt = et + θet−1

yt = (1 + θL)et

MA(q): yt = b(L)et, where b(L) is order q
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ARMA

ARMA(p, q): a(L)yt = b(L)et,

where a(L) is order p and b(L) is order q, and a(L) and b(L) are relatively prime.
An ARMA representation is not unique. For example, an AR(1) (with |ρ| < 1) is equal to an MA(∞),

as we saw above. We can see it from the formula for inversion:
∞

yt =
∑

ρjet−j

=0

Aside: you can also get this formula by repeatedly using the definition of AR(1):

yt = ρyt 1 + et = ρ(ρy− t−2 + et−1) + et =
k−1

... =
∑

ρjet−j + ρkyt−k

=0

and noticing that ρkyt k →L2
0 as k →∞ In fact, this is more generally true. Any AR(p) with roots outside−

the unit circle has an MA representation. These processes are called stationary ( because there is a weakly
stationary version of them).

Any MA process with roots outside unit circle can be written as AR(∞), such processes called invertible.
If yt = b(L)et ia an invertible MA process, then et = b(L)−1yt. That is, the “errors” are laying in a space of
observations and can be recovered from y’s (another name for this: errors are fundamental).

Covariance structure

Definition 7. auto-covariance γk ≡ cov(yt, yt+k)

Definition 8. auto-correlation ρk ≡ γk

γ0

AR(1) example

yt = ρyt−1 + et

Observe V ar(yt) = ρ2V ar(yt 1) + σ2, and V ar( )
2

y ) = V ar(y = γ , so γ = σ . Also, it is easy to see− t t−1 0 0 1−ρ2

by induction that
k

γk =
2ρ σ

1−ρ2 .
Another way to see this is from the MA representation:

∞
yt =

∑
ρiei

i=0

2

⇒

γ 2
0 =

∑
ρ iσ2 σ

=
1− ρ2

∞ ∞ ∞ kσ2

γ i ρ
k = cov(

∑
ρ et i,

∑
ρjet+k−j) = ρi+jσ2 =− 1 ρ2

i=0 j=0 i,j:

∑

i=j−k
−
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More generally, if yt =
∑∞

i=0 ciet−i then

∞ ∞
cov(yt, yt+k) =cov

(∑
ciet c−i, iet+k−i

i=0

∑∞

∑

i=0

)

=σ2 cjcj+k

j=0

MA representation and cov∑ariance stationarity yt =
∑∞

i=0 ciet i so yt has finite variance, and in−
fact is covariance stationary, if ∞

j=0 c2
j < ∞. It is often easier to prove things with the stronger assumption

of absolute summability, ∞ ∞
j=0 |cj | < ∞ (or stronger still j=0 j|cj | < ∞).

Covariance function

∑ ∑

Definition 9. covariance function γ(ξ) = ∞
i= γ ξi, where ξ is a complex number.−∞ i

Lemma 10. Covariance function of MA For

∑

an MA, yt = c(L)et, γ(ξ) = σ2c(ξ)c(ξ−1).

Proof.

∞
c(ξ)c(ξ−1) =(

∑ ∞
ciξ

i)(
∑

ciξ
−i)

i=0 i=0

∞
=

j

∑
cjclξ

j−l

,l=0

∞ ∞
=

∑
ξk

k=−∞

∑
cjcj+k

j=0

Lemma 11. Covariance function of ARMA For an ARMA, a(L)yt = b(L)et, γ(ξ) = σ2 b(ξ)b(ξ−1)
a(ξ)a(ξ−1)

The last statement will be very helpful for spectrum.
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