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Recitation 1 

Stationarity 
  Definition 1. White noise {e 2 2

t} s.t. Eet = 1, Eetes = 0, Eet = σ

Remark 2. {et} can be white noise without being independent. 

Definition 3. strict stationarity A process, {yt}, is strictly stationarity if for each k, the distribution of 
{yt, ..., yt+k} is the same for all t 

Definition 4. 2nd order stationarity {yt}, is 2nd order stationary if Eyt, Ey2
t , and cov(yt, yt+k) do not 

depend on t 

Remark 5. 2nd order stationarity is also called covariance stationarity or weak stationarity 

Example 6. ARCH : 
Let 

yt =σtet 

σ2 
t =α + θy2 

t−1 

with et ∼ iid(0, σ2). This is an ARCH(1) process. It is covariance stationary. To show this, we first need to 
note that Eσ2 

t is finite 

 
Eσ2 α 

t = 
1 − θσ2 

assuming that  θσ2 ∈ [0, 1). 
Now, we know that 

E[yt] = E[σtet] = 0 

and 

cov(yt, yt+k) =E[σ
 

tetσt+ket+k] 

= 

�

0 if k = 0 
ασ2 

if k = 01−θσ2 

So this process is white noise. 

� � 

�

σ2 =α + θ(σt
2 
−1e 

2 
t−1)t 

=α + θ(α + θσt
2 
−2et

2 
−2)et

2 
−1 

∞ j 

=α θj( et
2 
−k) 

j=0 k=1 

⇒



ARMA 2 

ARMA 

ARMA(p, q) :a(L)yt = b(L)et, where a(L) is order p and b(L) is order q, and a(L) and b(L) are relatively prime. 

An ARMA representation is not unique. For example, an AR(1) (with |ρ| < 1) is equal to an MA(∞), 
as we saw above. In fact, this is more generally true. Any AR(p) with roots outside the unit circle has an 
MA representation. 

Impluse response 

Let a(L)yt = b(L)et 

� 

Definition 7. Impulse-response of yt is 
∂yt 

∂et−i 

Definition 8. cumulative effect of a shock is 
�∞ ∂yt+i 

i=0 ∂et 

Example 9. AR(1) (1 − ρL)yt = et 

∂yt 
=ρi 

∂et−i 

∞ 
� ∂yt+i 1 

= 
∂et 1 − ρ 

i=0 

Multivariate ARMA 
⎡ ⎤ 

e1t 

Definition 10. multivariate white noise et = ⎣ .. ⎦, E[et] = 0, E[ete
� 
t] = Σ, E[etes] = 0 

ent 

Definition 11. multivariate ARMA(p,q) A(L)yt = B(L)et 

We can manipulate multivariate ARMA (aka VARMA) representations just like we do univariate ones. 
A VARMA has an MA representation if all the roots of A(L) are outside the unit circle. We’ll cover this in 
more detail later. 

Invertibility 
1 A lag polynomial, A(L) is invertible, if given B(L) and et, we can uniquely construct a stationary series 
yt such that A(L)yt = B(L)et. You have probably already heard that A(L) is invertible if its roots are 
outside (or perhaps just not on the unit circle). To arrive at this fact, we first informally treat A() and B() 

as polynomials over C, conjecture the result, and then verify that it is correct. As a function over C, B(z) is 
A(z) 

B(z)well defined. We know that if A() has no roots on or inside the unit circle, then 
A(z) is holomorphic on an 

B(z)open disc containing the unit circle.2 This implies that 
A(z) has a power series representation on this disc: 

∞ 
B(z) t = ctz 
A(z) 

t=0 

1This is based on Chapter 7 of Van der Vaart’s notes. 
B(z)2If A(z) simply has no roots on the unit circle, but has some inside, 
A(z) still has an absolutely convergent Laurent series 

on a ring containing the circle, B(z) 
= 

P

∞ ctz
t . We could still call A(L) invertible, but it’s inverse now involves writing 

A(z) t=−∞ 

yt as a combination of past and future et. This situation does not make much sense in econometrics, so we usually rule it out. 



                

Role of stationarity 3 

Importantly, this series is absolutely convergent on the disc, and on the unit circle in particular, so ∞

 |ct| 
is finite. This ensures that as long as supt Eet < ∞,  
to verify that yt = ctet satisfies A(L)yt = B(L)et. It 

�

solution to the ARMA equation. Finally, it is possible t

�

t=0 
ctet converges absolutely. It is straightforward 

�

can also be shown that this is unique stationary 
o show that if A(L) has a root on the unit circle, 

then there is no stationary solution to A(L)yt = B(L)et. 

Role of stationarity 

� 

� 

� � � 

� � 
� 

� 

Stationarity plays is important for ensuring that an ARMA equation is well defined. Consider the following
example (based on exercise 7.7 and theorem 7.8 of van der Vaart). 

Example 12. Suppose yt = ρyt−1 + et. Let {et} and rho be given. Pick any y0. Then we can construct 

ρyt−1 + et t > 0 
yt = 1 (yt+1 − et) t < 0

ρ

and these {yt} will satisfy the AR equation. 

How can we reconcile this example with the MA(∞) representation, y0 = 
� 

ρie−i, which suggests i=0∞ 

that y0 should be uniquely determined by {et} and ρ? 
The answer is that if {et} is bounded, then the only y0 that leads to bounded {yt} is y0 = ρie−i.i=0∞ 

Or, to be more precise, if {et} is covariance stationary, the only {yt} that satisfies the AR equation and is 
also covariance stationary is the one given by the MA(∞) equation. 

Covariances 

Definition 13. auto-covariance γk ≡ cov(yt, yt+k) 

Remark 14. In the next lecture, we will see that covariances are important for laws of large numbers 
and central limit theorem. Suppose yt has auto-covariances γk. Consider the variance of the mean of T 

observations of yt: 

⎛ ⎞ 
T T

1 1 
Var( yt) = ⎝ Var(yt) + cov(yt, ys)⎠ 

T T 2 
t=1 t=1 �t=s 

1 
= 

T 2 
(Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + ...) 

T 
1 

= γ0 + 2 γt 

T − t 

T T 
t=1 

For a LLN we will need conditions on {γk} to ensure that this series converges to zero. Similarly, the 
asympotic variance of 

√
T ȳT will depend on {γk}. 

Definition 15. auto-correlation ρk ≡ γk 
γ0 

�∞
Definition 16. covariance generating function γ(ξ) = i=−∞ γiξ

i, where ξ is a complex number. 

We can recover the auto-covariances from the covariance generating function by integrating it: 

1 −k+1γ(z)z dz (1) γk = 
2πi C 



  

Covariances 4 

where C is a contour that goes counter-clockwise. If you’re familar with complex analysis, you might recognize 
that (1) follows immediately from Cauchy’s integral formula. The result can also be verified directly. The 
choice of contour does not matter here, so let’s take the unit circle for convenience. That gives: 

  
1 
� π  

−k 1 
γ(z)z dz = 

�

�

γje
iπje −iπkdz 

2πi C 2π −π j 
  � 1 
� π 

= γ e iπ(j−k)
j dz 
2π −πj 

=γk 

� 

�

� 

where the last line follows from the fact that

1 
� π 

−iω(n) 1 if n = 0 
e dω = 

2π −π 0 if n = 0 

Remark 17. The covariance generating function is related to the spectral density, which we will cover in 
more detail later. 

Definition 18. The spectral density of y is 

∞ 

sY (ω) ≡ 1 −iωj γje 
2π 

j=−∞ 

As with the covariance generating function, we can recover the auto-covariances of y from its spectral 
density. 

�∞
Lemma 19. Suppose yt has absolute summable covariances ( −∞ |γj | < ∞), then 

� π 

γk = sY (ω)e iωkdω 
−π 
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