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Recitation 2 

HAC 

Goal: estimate J = 
�� βk (or, more generally, ˆdo inference on �, which has asymptotic −�

variance J ) 
Methods

� 

: 

1.	 Parametric: estimate ARMA(p,q) for zt: 

A(L)zt = B(L)et 

Recall the relationship between the spectrum and J . The spectral density is 

1 
�

S(�) = e−i�j βj
2ω 

j=−� 

so,

2ωS(0) = J


Also, remember that the spectrum of an ARMA1 is: 

S(�) = 
1 

α2 B(ei�) 2|
|A(ei�)|

|
22ω


so, for an ARMA,

B(1)2 

J = α2 

A(1)2 

Thus, we can estimate J by estimating B̂(L) and Â(L) using standard methods (OLS 
if the ARMA has a finite order AR representation, the Kalman filter otherwise), and 
then estimate J as 

ˆ = α̂2 B̂(1)2	

(1)
ˆ

J 
A(1)2 

•	 As Anna said, in practice this is often non-parametric since people tend to increase 
p and q with sample size 

1Anna showed this for the covariance function at the end of lecture 1. 
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•	 For multivariate series, this is called VARMA-HAC (or just VAR-HAC) and (1) 
becomes: 

 Ĵ  Â −1B̂ ˆB̂ �Â
�

= (1) (1)� (1) (1)1

2.	 Non-parametric: uses a truncated, weighted sum of sample covariances to estimate the 
long-run variance: 

ST  
Ĵ = 

�

kT (j)β̂j 

−ST 

where ST grows with T , but slowly so that {β̂ ST 
j}j=0
 are consistent, and kT (j) guarantee 

that Ĵ is positive definite. See lecture 3 for more details.


•	 Prewhitening : nonparametric HAC performs poorly when the series is persistent. 
Parametric HAC performs poorly if the model is wrong. Prewhitening combines 
the two. From the above we know that if et is white noise with variance �, then 
when A(L)zt = B(L)et, the long-run variance of zt is 

Jz = A(1)−1B(1)�B(1)�A(1)1� 

Similarly if et is not white noise, but has long-run variance Je, then 

Jz = A(1)−1B(1)JeB(1)�A(1)1� 

The prewhitened nonparametric estimate of Jz is then simply: 

Ĵz = Â(1)−1B̂(1)ĴeB̂(1)�Â(1)1� 

where Â and B̂ are estimated by OLS or Kalman filtering, and Ĵe is estimated by 
doing nonparametric HAC hat êt. 

3.	 Keifer-Vogelsang : set ST = T − 1, which makes Ĵ converge to a distribution instead 
of J . They then calculate the limiting distribution of t = ��̂

J
i

ii 
. This has a non-normal 

limiting distribution, which can be used for testing. 

•	 We will see a lot of non-normal limiting distributions in a couple of weeks when 
we cover unit roots and the functional central limit theorem. It would be a good 
exercise to come back and try to derive the Keifer-Vogelsang result. 

•	 Müller (2007) takes a related approach that just focuses on low frequency obser
vations. 
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Practical Advice This summer, Mark Watson gave a lecture on HAC 
http://nber15.nber.org/c/2008/si2008/TSE/Lecture9.pdf 
and this is a short summary of what he recommended. When doing HAC, you have to 
choose which of the three methods to use, and then if you choose ARMA, the lag lengths, 
or if you choose nonparametric, the kernel and bandwidth. In this discussion, the goal is to 
do inference on �̂

•	 Simulations show large size distortions for all methods (reject at 5% level far more 
than 5% of time). Tests work worse when 

–	 Sample size is smaller 

–	 Data is more persistent (e.g. an AR(1) with coefficient near one) 

	 If it is the correct model, parametric ARMA works best. Sometimes theory suggests 

� � � � 

� � 

�	 � 

•
an ARMA (den Haan and Levin 1997). 

•	 Kiefer-Vogelsang leads to smaller size distortions, but has less power than kernel meth
ods 

For kernel methods: • 

–	 The theoretically optimal2 kernel is called the quadratic-spectral (QS) kernel. In 
practice, all common kernels perform similarly. 

–	 For inference, it is not necessarily best to minimize MSE of Ĵ 

≈ See Sun, Philips, and Jin (2008) for a more formal discussion 
ˆ α2≈ Intuition: suppose z � N(µ, α2) (think of z as 

�
n(� − �0)) and ˆ is an 

estimate of α2 . For testing H0 : µ = 0 at level �, we would compute a critical 
value, c, from the normal distribution such that P ( z/α < c) = �. If we | |
don’t know α, then this how well this test would work depends on how close 

z	 zP 
�̂

2

2 < c2 is to P 
�

2

2 < c2 . Very loosely: 

2 
2 2P 

z
< c =E 

� 
1(z < α̂2 c 2) 

� 
= E 

� 
g(α̂2) 

�	
(2)

α̂2 

1 �E g(α2) + (α̂2 − α2)g�(α2) + (α̂2 − α)2 g��(α2) (3)
2

1 �Eg(α2) + Bias(α̂2)g� + MSE(α̂2)g��	 (4)
2 

So the error in the test depends on a combination of the bias and MSE of Ĵ . 
The best choice of ST for testing shouldn’t minimize MSE; it should minimize 

2In the sense that it minimizes MSE of Ĵ 

http://nber15.nber.org/c/2008/si2008/TSE/Lecture9.pdf
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this combination of bias and MSE. Since bias decreases with ST , the best ST 

for testing is greater than the best ST for MSE.3 

≈ Andrews (1991) gives formula for minimal MSE choice of ST . 

· For inference: use larger ST

· For a GMM weighting matrix, minimal MSE seems like a good choice 

≈	 Similar reasoning suggests (maybe) using a longer lag length for an ARMA 
model than suggested by BIC and maybe AIC too (we will cover these in 
lecture 5) 

3This discussion ignores another issue in testing things like 
�

n(� − �̂0). It assumed that z � N , while in 
practice we usually only know that z is asymptotically normal. With persistent data, which is common, the 
finite sample distribution can be far from normal. We will see more of this later. 
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