14.386 Problem Set 1 Spring 2007

- 1. Consider an i.i.d. sample of (y_i, x_i) of log of earnings y_i and explanatory variables x_i . Suppose that the data earnings has been topcoded, so that any true log-earnings above a limit L has been recorded as L.
 - (a) Now suppose that all you are interested in is E[y|x]. How could you estimate this without imposing any functional form?
 - (b) Is E[y|x] an interesting object in this application? State why or why not.
 - (c) Suppose $median(y_i^*|x) = g_0(x)$. What is $median(y_i|x)$? Is $median(y_i|x)$ an interesting object in this application?
 - (d) How oculd you nonparametrically estimate $median(y_i|x)$? (Hint: $median(y|x) = \arg \min_{\mu} E[|y_i \mu||x])$
- 2. A kernel density estimator is $\hat{f}_h(z) = \sum_{i=1}^n K_h(z-z_i)/n$, $K_h(u) = h^{-r}k(u/h)$ where r is the dimension of z. Consider z as fixed at some value. Since $\hat{f}_h(z)$ is just a sample average of a function of the data, when the data are i.i.d. we have

$$Var(\hat{f}_h(z)) = n^{-1} Var\left(K_h(z-z_i)\right).$$

- (a) Give a simple estimator of $Var(\hat{f}_h(z))$. How could you use this to form a confidence interval for $f_0(z)$?
- (b) Let $\hat{m}_h(z) = \sum_{j=1}^n y_i K_h(z-z_i)/n$. How could you estimate the joint covariance matrix of $\hat{m}_h(z)$ and $\hat{f}_h(z)$?
- (c) Use part (b) and the delta method to form an estimator of the asymptotic variance of the kernel regression estimator $\hat{g}_h(z) = \hat{m}_h(z)/\hat{f}_h(z)$.
- 3. This is an empirical exercise using the gasoline data supplied by the TA.
 - (a) Graph an estimator of the density of gasoline consumption (note NOT the natural log of gasoline consumption) for each individual year. Are there any discernible patterns over time?
 - (b) For each year separately, estimate a series estimator of a partially linear model

$$\ln q_i = g(\ln p_i, \ln I_i) + D'_i\beta + \epsilon_i,$$

where $\ln q_i$, $\ln p_i$, and $\ln I_i$ are the natural logs of gasoline consumption, price, and income, respectively, and D_i are the location dummies for the year. Choose the number of terms using cross-validation and Mallows criterion. Are there any differences?

- (c) Pick any two years and plot $\hat{g}(\ln p, \ln I)$ as a function of $\ln p$ for your estimator from (b) with $\ln I$ fixed at some value. Do they have similar shape for the two years?
- (d) For your estimates from (c) also plot plus or minus two standard error bands. Do you think that there are statistical differences among the estimates?
- (e) Construct and carry out a formal test of stability across time of your estimates from (c) and (d).

Cite as: Whitney Newey, course materials for 14.386 New Econometric Methods, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].