REGRESSION RECAP

Josh Angrist

MIT 14.387 (Fall 2014)

Regression: What You Need to Know

We spend our lives running regressions (I should say: "regressions run me"). And yet this basic empirical tool is often misunderstood. So I begin with a recap of key regression properties. We need these to make sense of IV as well.

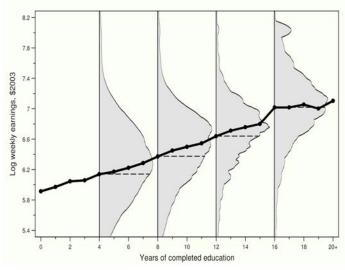
Our regression agenda:

- 1 Three reasons to love
- 2 The CEF is all you need
- 3 The long and short of regression anatomy
- 4 The OVB formula
- **5** Limited dependent variables and marginal effects
- 6 Causal vs. casual

The CEF

- The Conditional Expectation Function (CEF) for a dependent variable, Y_i given a K×1 vector of covariates, X_i (with elements x_{ki}) is written E [Y_i|X_i] and is a function of X_i
- Because X_i is random, the CEF is random. For dummy D_i , the CEF takes on two values, $E[Y_i|D_i = 1]$ and $E[Y_i|D_i = 0]$
- For a specific value of X_i , say $X_i = 42$, we write $E[Y_i|X_i = 42]$
- For continuous Y_i with conditional density $f_y(\cdot|X_i = x)$, the CEF is

$$E\left[\mathbf{Y}_{i} | \mathbf{X}_{i} = x\right] = \int tf_{y}\left(t | \mathbf{X}_{i} = x\right) dt$$


If Y_i is discrete, $E[Y_i|X_i = x]$ equals the sum $\sum_t tf_y(t|X_i = x)$

• The CEF residual is uncorrelated with any function of of X_i . Write $\varepsilon_i \equiv Y_i - E[Y_i|X_i]$. Then for any function, $h(X_i)$:

$$\boldsymbol{E}[\varepsilon_i \boldsymbol{h}(\mathbf{X}_i)] = \boldsymbol{E}[(\mathbf{Y}_i - \boldsymbol{E}[\mathbf{Y}_i | \mathbf{X}_i])\boldsymbol{h}(\mathbf{X}_i)] = \boldsymbol{0}$$

(The LIE proves it)

• Figure 3.1.1 shows my favorite CEF

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 3.1.1: Raw data and the CEF of average log weekly wages given schooling. The sample includes white men aged 40-49. The data are from the 1980 IPUMS5 percent sample.

Population Regression

 Define population regression ("regression," for short) as the solution to the population least squares problem. Specifically, the K×1 regression coefficient vector β is defined by solving

$$eta = \operatorname*{arg\,min}_{b} E\left[\left(\mathbf{Y}_{i} - \mathbf{X}_{i}^{\prime}b\right)^{2}
ight]$$

• Using the first-order condition,

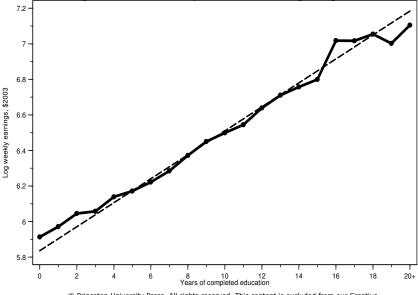
$$E\left[\mathbf{X}_{i}\left(\mathbf{Y}_{i}-\mathbf{X}_{i}^{\prime}b\right)\right]=\mathbf{0},$$

the solution for b can be written

$$\beta = E \left[\mathbf{X}_i \mathbf{X}'_i \right]^{-1} E \left[\mathbf{X}_i \mathbf{Y}_i \right]$$

- By construction, $E[X_i (Y_i X'_i\beta)] = 0$. In other words, the population residual, defined as $Y_i X'_i\beta = e_i$, is uncorrelated with the regressors, X_i
- This error term has no life of its own: e_i owes its meaning and existence to β

Three reasons to love


- 1 Regression solves the population least squares problem and is therefore the BLP of Y_i given X_i
- 2 If the CEF is linear, regression is it
- 3 Regression gives the best linear approximation to the CEF
- The first is true by definition; the second follows immediately from CEF-orthgonality. Let's prove the third it's my favorite!

Theorem

The Regression-CEF Theorem (MHE 3.1.6) The population regression function $X'_{i}\beta$ provides the MMSE linear approximation to $E[Y_{i}|X_{i}]$, that is,

$$\beta = \arg\min_{b} E\{(E[\mathbf{Y}_{i}|\mathbf{X}_{i}] - \mathbf{X}_{i}'b)^{2}\}.$$

• Figure 3.1.2 illustrates the theorem (What does this depend on?)

@ Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Sample is limited to white men, age 40-49. Data is from Census IPUMS 1980, 5% sample.

Figure 3.1.2: Regression threads the CEF of average weekly wages given schooling

The CEF is all you need

- The regression-CEF theorem implies we can use $E[Y_i|X_i]$ as a dependent variable instead of Y_i (but watch the weighting!)
- Another way to see this:

$$\beta = E[\mathbf{X}_i \mathbf{X}_i']^{-1} E[\mathbf{X}_i \mathbf{Y}_i] = E[\mathbf{X}_i \mathbf{X}_i']^{-1} E[\mathbf{X}_i E(\mathbf{Y}_i | \mathbf{X}_i)]$$
(1)

The CEF or grouped-data version of the regression formula is useful when working on a project that precludes the analysis of micro data

- To illustrate, we can estimate the schooling coefficient in a wage equation using 21 conditional means, the sample CEF of earnings given schooling
- As **Figure 3.1.3** shows, grouped data weighted by the number of individuals at each schooling level produces coefficients *identical* to that generated by the underlying micro data

A - Individual-level data

. regress earnings school, robust

Source		df		Number of obs = F(1,409433) =	
	22631.4793 188648.31	409433	.460755019	Prob > F = R-squared = Adj R-squared =	= 0.1071
Total	211279.789	409434		Root MSE	
		Robus		Old Fashio	ned
earnings	Coef.	Std. E	rr. t	Std. Err	. t
	.0674387 5.835761				221.63 1457.38

B - Means by years of schooling

. regress average_earnings school [aweight=count], robust

(sum of wgt is 4.0944e+05)

Source	SS	df	MS	Number of obs =	21
+				F(1, 19) =	540.31
Model	1.16077332	1 1.1	6077332	Prob > F =	0.0000
Residual	.040818796	19 .00	2148358	R-squared =	0.9660
+				Adj R-squared =	0.9642
	1.20159212			Root MSE =	
average		Robust		Old Fashione	
_earnings	Coef.	Std. Err.	t	Std. Err.	t
	.0674387	.0040352	16.71	.0029013	23.24
const.	5.835761	.0399452	146.09	.0381792	152.85

Figure 3.1.3: Micro-data and grouped-data estimates of returns to schooling. Source: 1980 Census - IPUMS, 5 percent sample. Sample is limited to white men, age 40-49. Derived from Stata regression output. Oldfashioned standard errors are the default reported. Robust standard errors are heteroscedasticity-consistent. Panel A uses individual-level data. Panel B uses earnings averaged by years of schooling.

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Regression anatomy lesson

- Bivariate reg recap: the slope coefficient is $\beta_1 = \frac{Cov(\mathbf{Y}_i, x_i)}{V(x_i)}$, and the intercept is $\alpha = E[\mathbf{Y}_i] \beta_1 E[\mathbf{X}_i]$
- With more than one non-constant regressor, the *k*-th non-constant slope coefficient is:

$$\beta_{k} = \frac{Cov\left(\mathbf{Y}_{i}, \tilde{x}_{ki}\right)}{V\left(\tilde{x}_{ki}\right)},\tag{2}$$

where \tilde{x}_{ki} is the residual from a regression of x_{ki} on all other covariates

- The anatomy formula shows us that each coefficient in a multivariate regression is the bivariate slope coefficient for the corresponding regressor, after "partialing out" other variables in the model.
- · Verify the regression-anatomy formula by subbing

$$\mathbf{Y}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{1i} + \dots + \beta_{k} \mathbf{x}_{ki} + \dots + \beta_{\mathbf{K}} \mathbf{x}_{\mathbf{K}i} + \mathbf{e}_{i}$$

in the numerator of (2) and work through to find that $Cov(Y_i, \tilde{x}_{ki}) = \beta_k V(\tilde{x}_{ki})$

Omitted Variables Bias

- The omitted variables bias (OVB) formula describes the relationship between regression estimates in models with different controls
- Go long: wages on schooling, S_i , controlling for ability (A_i)

$$Y_i = \alpha + \rho S_i + A'_i \gamma + \varepsilon_i$$
 (3)

Ability is hard to measure. What if we leave it out? The result is

$$rac{\mathcal{C}ov(\mathrm{Y}_i,\mathrm{S}_i)}{V(\mathrm{S}_i)}=
ho+\gamma'\delta_{\mathcal{A}s},$$

where δ_{As} is the vector of coefficients from regressions of the elements of A_i on s_i ...

- Short equals long plus the effect of omitted times the regression of omitted on included
- Short equals long when omitted and included are uncorrelated
- **Table 3.2.1** illustrates OVB (some controls are bad; the formula works for good and bad alike)

62 Chapter 3

 TABLE 3.2.1

 Estimates of the returns to education for men in the NLSY

	(1)	(2)	(3)	(4)	(5)
			Col. (2) and		Col. (4), with
		Age	Additional	Col. (3) and	Occupation
Controls:	None	Dummies	Controls*	AFQT Score	Dummies
	.132	.131	.114	.087	.066
	(.007)	(.007)	(.007)	(.009)	(.010)

Notes: Data are from the National Longitudinal Survey of Youth (1979 cohort, 2002 survey). The table reports the coefficient on years of schooling in a regression of log wages on years of schooling and the indicated controls. Standard errors are shown in parentheses. The sample is restricted to men and weighted by NLSY sampling weights. The sample size is 2,434.

*Additional controls are mother's and father's years of schooling, and dummy variables for race and census region.

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Limited dependent variables

- Regression always make sense in the sense that regression approximates the CEF
- Can I *really* use OLS if my dependent variable is . . . a dummy (like employment); non-negative (like earnings); a count variable (like weeks worked)?
- Regress easy, grasshopper . . . but if you do stray, show me the MFX
- Probing probit: assume that LFP is determined by a latent variable, Y^{*}_i, satisfying

$$Y_{i}^{*} = \beta_{0}^{*} + \beta_{1}^{*}S_{i} - \nu_{i},$$
 (4)

where v_i is distributed $N(0, \sigma_v^2)$. The latent index model says

$$\mathbf{Y}_i = \mathbf{1}[\mathbf{Y}_i^* > \mathbf{0}],$$

so the CEF can be written

$$E[\mathbf{Y}_i|\mathbf{S}_i] = \Phi\left[\frac{\beta_0^* + \beta_1^*\mathbf{S}_i}{\sigma_v}\right]$$

Limited dependent variables (cont.)

• For Bernoulli s_i:

$$E[\mathbf{Y}_i|\mathbf{S}_i] = \Phi\left[\frac{\beta_0^*}{\sigma_v}\right] + \left\{\Phi\left[\frac{\beta_0^* + \beta_1^*}{\sigma_v}\right] - \Phi\left[\frac{\beta_0^*}{\sigma_v}\right]\right\}\mathbf{S}_i$$

OLS is bang on here! (why?)

• But it ain't always about treatment effects; MFX for probit are

$$E\left(\frac{\partial E[\mathbf{Y}_i|\mathbf{S}_i]}{\partial \mathbf{S}_i}\right) = E\left(\varphi\left[\frac{\beta_0^* + \beta_1^*\mathbf{S}_i}{\sigma_\nu}\right]\right)\frac{\beta_1^*}{\sigma_\nu}$$
(5)

Index coefficients tell us only the sign of the effect of S_i on average Y_i (sometimes, as in MNL, not even that)

• For logit:

$$E\left(\frac{\partial E[\mathbf{Y}_i|\mathbf{S}_i]}{\partial \mathbf{S}_i}\right) = E[\Lambda(\beta_0^* + \beta_1^*\mathbf{S}_i)(1 - (\Lambda\beta_0^* + \beta_1^*\mathbf{S}_i))]\beta_1^* \qquad (6)$$

• OLS and MFX from any nonlinear alternative are usually close (identical for probit when s_i is Normal)

Making MFX

- Are derivative-based MFX kosher in a discrete-regressor scenario?
 - With covariates, stata generates discrete average derivatives like this,

$$E\left\{\Phi\left[\frac{\beta_0^{*\prime}X_i + \beta_1^*}{\sigma_{\nu}}\right] - \Phi\left[\frac{\beta_0^{*\prime}X_i}{\sigma_{\nu}}\right]\right\}$$
(7)

Note that

$$\Phi\left[\frac{X_i'\beta_0^* + \beta_1^*}{\sigma_{\nu}}\right] = \Phi\left[\frac{X_i'\beta_0^*}{\sigma_{\nu}}\right] + \varphi\left[\frac{X_i'\beta_0^* + \Delta_i}{\sigma_{\nu}}\right]\beta_1^*$$

for some $\Delta_i \in [0, \beta_1^*]$. So the continuous MFX calculation

$$E\left\{\varphi\left[\frac{X_{i}^{\prime}\beta_{0}^{*}+\beta_{1}^{*}\mathbf{s}_{i}}{\sigma_{\nu}}\right]\right\}\beta_{1}^{*}$$
(8)

approximates the discrete

- Stata notices discrete regressors, in which case you' llget (7) unless you ask for (8)
- OLS vindicated: MHE Table 3.4.2

			Right-Hand-Side Variable										
			More than Two Children					Number of Children					
			Pr	obit	To	bit		Probit MFX	Tobit	MFX			
Dependent variable	Mean (1)	OLS (2)	Avg. Effect, Full Sample (3)	Avg. Effect on Treated (4)	Avg. Effect, Full Sample (5)	Avg. Effect on Treated (6)	OLS (7)	Avg. Effect, Full Sample (8)	Avg. Effect, Full Sample (9)	Avg. Effect on Treated (10)			
A. Full sample													
Employment	.528 (.499)	162 (.002)	163 (.002)	162 (.002)	_	-	113 (.001)	114 (.001)	-	—			
Hours worked	16.7	-5.92		`— `	-6.56	-5.87	-4.07		-4.66	-4.23			
	(18.3)	(.074)			(.081)	(.073)	(.047)		(.054)	(.049)			
B. Nonwhite college	attenders o	over age 30	, first birtl	h before age	20								
Employment	.832	061	064	070	_	_	054	048	_	_			
	(.374)	(.028)	(.028)	(.031)			(.016)	(.013)					
Hours worked	30.8	-4.69	—	—	-4.97	-4.90	-2.83	—	-3.20	-3.15			
	(16.0)	(1.18)			(1.33)	(1.31)	(.645)		(.670)	(.659)			

TABLE 3.4.2 Comparison of alternative estimates of the effect of childbearing on LDVs

Notes: The table reports OLS estimates, average treatment effects, and marginal effects (MFX) for the effect of childbearing on mothers' labor supply. The sample in panel A includes 254,654 observations and is the same as the 1980 census sample of married women used by Angrist and Evans (1998). Covariates include age, age at first birth, and dummies for boys at first and second birth. The sample in panel B includes 746 nonwhite women with at least some college aged over 30 whose first birth was before age 20. Standard deviations are reported in parentheses in column 1. Standard errors are shown in parentheses in other columns. The sample used to estimate average effects on the treated in columns 4, 6, and 10 includes women with more than two children.

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Casual vs. causal

- *Casual* regressions happen for many reasons: exploratory or descriptive analysis, just having fun, no long-term commitment . . .
- *Causal* regressions are more serious and enduring, describe counterfactual states of the world, useful for policy analysis
- Americans mortgage homes to send a child to elite private colleges. Does private pay? Denote private attendance by C_i. The causal relationship between private college attendance and earnings is

 $\begin{array}{ll} \mathbf{Y}_{1i} & \text{if } \mathbf{C}_i = \mathbf{1} \\ \mathbf{Y}_{0i} & \text{if } \mathbf{C}_i = \mathbf{0} \end{array}$

• $Y_{1i} - Y_{0i}$ is an individual causal effect. Alas, we only get to see one of Y_{1i} or Y_{0i} . The observed outcome, Y_i , is

$$Y_i = Y_{0i} + (Y_{1i} - Y_{0i})C_i$$
 (9)

We hope to measure average $Y_{1i}-Y_{0i}$ for some group, say those who went private: $E[Y_{1i}-Y_{0i}|C_i = 1]$, i.e., TOT ¹⁷

Casual vs. causal (cont.)

• Comparisons of those who did and didn't go private are biased:

$$\underbrace{E\left[Y_{i}|C_{i}=1\right]-E\left[Y_{i}|C_{i}=0\right]}_{\text{Observed difference in earnings}} = \underbrace{E\left[Y_{1i}-Y_{0i}|C_{i}=1\right]}_{\text{TOT}} (10)$$

$$+\underbrace{E\left[Y_{0i}|C_{i}=1\right]-E\left[Y_{0i}|C_{i}=0\right]}_{\text{selection bias}}$$

- It seems likely that those who go to private college would have earned more anyway. The naive comparison, E [Y_i|C_i = 1] - E[Y_i|C_i = 0], exaggerates the benefits of private college attendance
 - Selection bias = OVB in a causal model
- The *conditional independence assumption* (CIA) asserts that conditional on observed X_i, selection bias disappears:

$$\{\mathbf{Y}_{0i}, \mathbf{Y}_{1i}\} \coprod \mathbf{C}_i | \mathbf{X}_i \tag{11}$$

• Given the CIA, conditional-on-X_i comparisons are causal:

$$E[\mathbf{Y}_i | \mathbf{X}_i, \mathbf{C}_i = 1] - E[\mathbf{Y}_i | \mathbf{X}_i, \mathbf{C}_i = 0] = E[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} | \mathbf{X}_i]$$

Using the CIA

- The CIA means that C_i is "as good as randomly assigned," conditional on X_i
- A secondary implication: Given the CIA, the conditional on X_i causal effect of private college attendance on private graduates equals the average private effect at X_i:

$$E\left[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} | \mathbf{X}_i, \mathbf{C}_i = 1\right] = E\left[\mathbf{Y}_{1i} - \mathbf{Y}_{0i} | \mathbf{X}_i\right]$$

- This is important . . . but less important than the elimination of selection bias
- Note also that the marginal average private college effect can be obtained by averaging over X_i:

$$E\{E[Y_i|X_i, C_i = 1] - E[Y_i|X_i, C_i = 0]\}$$

= $E\{E[Y_{1i} - Y_{0i}|X_i]\}$
= $E[Y_{1i} - Y_{0i}]$

This suggests we compare people with the same X's ... like matching

 . . . but I wanna regress!

Regression and the CIA

- The regression machine turns the CIA into causal effects
- Constant causal effects allow us to focus on selection issues (MHE 3.3 relaxes this). Suppose

$$Y_{0i} = \alpha + \eta_i$$

$$Y_{1i} = Y_{0i} + \rho$$
(12)

• Using (9) and (12), we have

$$Y_i = \alpha + \rho C_i + \eta_i \tag{13}$$

- Equation (13) *looks* like a bivariate regression model, except that (12) associates the coefficients in (13) with a causal relationship
- This is not a regression, because C_i can be correlated with potential outcomes, in this case, the residual, η_i

Regression and the CIA (cont.)

• The CIA applied to our constant-effects setup implies:

$$E[\eta_i | C_i, X_i] = E[\eta_i | X_i]$$

Suppose also that

$$E[\eta_i | \mathbf{X}_i] = \mathbf{X}'_i \gamma$$

so that

$$E[\mathbf{Y}_i | \mathbf{X}_i, \mathbf{C}_i] = \alpha + \rho \mathbf{C}_i + E[\eta_i | \mathbf{X}] = \alpha + \rho \mathbf{C}_i + \mathbf{X}'_i \gamma$$

Mean-independence implies orthogonality, so

$$Y_i = \alpha + \rho C_i + X'_i \gamma + v_i$$
(14)

has error

$$u_i \equiv \eta_i - \mathbf{X}'_i \gamma = \eta_i - \boldsymbol{E}[\eta_i | \mathbf{C}_i, \mathbf{X}_i]$$

uncorrelated with regressors, C_i and X_i . The same ρ appears in the regression and causal models!

• Modified **Dale and Krueger (2002)**: private proving ground

Matchmaker, Matchmaker . . . Find Me a College!

			Private			Public		
Applicant Group	Student	Ivy	Leafy	Smart	All State	Ball State	Altered State	1996 Earnings
	1		Reject	Admit		Admit		110,000
А	2		Reject	Admit		Admit		100,000
	3		Reject	Admit		Admit		110,000
В	4	Admit			Admit		Admit	60,000
Б	5	Admit			Admit		Admit	30,000
С	6		Admit					115,000
C	7		Admit					75,000
D	8	Reject			Admit	Admit		90,000
5	9	Reject			Admit	Admit		60,000

Notes: Students enroll at the college indicated in **bold**; enrollment decisions are also highlighted in grey.

Table 2.1: The College Matching Matrix

@ Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

	No S	election Co	ntrols	Sel	Selection Controls			
	(1)	(2)	(3)	(4)	(5)	(6)		
Private School	0.135	0.095	0.086	0.007	0.003	0.013		
	(0.055)	(0.052)	(0.034)	(0.038)	(0.039)	(0.025)		
Own SAT score/100		0.048	0.016		0.033	0.001		
		(0.009)	(0.007)		(0.007)	(0.007)		
Predicted log(Parental Income)			0.219			0.190		
			(0.022)			(0.023)		
Female			-0.403			-0.395		
			(0.018)			(0.021)		
Black			0.005			-0.040		
			(0.041)			(0.042)		
Hispanic			0.062			0.032		
1			(0.072)			(0.070)		
Asian			0.170			0.145		
			(0.074)			(0.068)		
Other/Missing Race			-0.074			-0.079		
0			(0.157)			(0.156)		
High School Top 10 Percent			0.095			0.082		
0 1			(0.027)			(0.028)		
High School Rank Missing			0.019			0.015		
0			(0.033)			(0.037)		
Athlete			0.123			0.115		
			(0.025)			(0.027)		
Selection Controls	Ν	Ν	N	Y	Y	Y		

Notes: Columns (1)-(3) include no selection controls. Columns (4)-(6) include a dummy for each group formed by matching students according to schools at which they were accepted or rejected. Each model is estimated using only observations with Barron's matches for which different students attended both private and public schools. The sample size is 5,583. Standard errors are shown in parentheses.

Table 2.2: Private School Effects: Barron's Matches

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

	No S	election Co	ntrols	Sel	Selection Controls		
	(1)	(2)	(3)	(4)	(5)	(6)	
Private School	0.212	0.152	0.139	0.034	0.031	0.037	
	(0.060)	(0.057)	(0.043)	(0.062)	(0.062)	(0.039)	
Own SAT Score/100		0.051	0.024		0.036	0.009	
		(0.008)	(0.006)		(0.006)	(0.006)	
Predicted log(Parental Income)			0.181			0.159	
•			(0.026)			(0.025)	
Female			-0.398			-0.396	
			(0.012)			(0.014)	
Black			-0.003			-0.037	
			(0.031)			(0.035)	
Hispanic			0.027			0.001	
*			(0.052)			(0.054)	
Asian			0.189			0.155	
			(0.035)			(0.037)	
Other/Missing Race			-0.166			-0.189	
			(0.118)			(0.117)	
High School Top 10 Percent			0.067			0.064	
			(0.020)			(0.020)	
High School Rank Missing			0.003			-0.008	
			(0.025)			(0.023)	
Athlete			0.107			0.092	
			(0.027)			(0.024)	
Average SAT Score of				0.110	0.082	0.077	
Schools Applied to/100				(0.024)	(0.022)	(0.012)	
Sent Two Application				0.071	0.062	0.058	
				(0.013)	(0.011)	(0.010)	
Sent Three Applications				0.093	0.079	0.066	
				(0.021)	(0.019)	(0.017)	
Sent Four or more Applications				0.139	0.127	0.098	
				(0.024)	(0.023)	(0.020)	
Note: Ctondard among an abarra in	.4	1001	ante sine in	14.000			

Note: Standard errors are shown in parentheses. The sample size is 14,238.

Table 2.3: Private School Effects: Average SAT Controls

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

No Selection Controls			Selection Controls			
(1)	(2)	(3)	(4)	(5)	(6)	
0.109	0.071	0.076	-0.021	-0.031	0.000	
(0.026)	(0.025)	(0.016)	(0.026)	(0.026)	(0.018)	
	0.049	0.018		0.037	0.009	
	(0.007)	(0.006)		(0.006)	(0.006)	
		0.187			0.161	
		(0.024)			(0.025)	
		-0.403			-0.396	
		(0.015)			(0.014)	
		-0.023			-0.034	
		(0.035)			(0.035)	
		0.015			0.006	
		(0.052)			(0.053)	
		0.173			0.155	
		(0.036)			(0.037)	
		-0.188			-0.193	
		(0.119)			(0.116)	
		0.061			0.063	
		(0.018)			(0.019)	
		0.001			-0.009	
		(0.024)			(0.022)	
		0.102			0.094	
		(0.025)			(0.024)	
			0.138	0.116	0.089	
			(0.017)	(0.015)	(0.013)	
			0.082	0.075	0.063	
			(0.015)	(0.014)	(0.011)	
			0.107	0.096	0.074	
			(0.026)	(0.024)	(0.022)	
			0.153	0.143	0.106	
			(0.031)	(0.030)	(0.025)	
	(1) 0.109 (0.026)	$\begin{array}{c cccc} (1) & (2) \\ 0.109 & 0.071 \\ (0.025) & (0.025) \\ 0.049 \\ (0.007) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Note: Standard errors are shown in parentheses. The sample size is 14,238.

Table 2.4: School Selectivity Effects: Average SAT Controls

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Dependent Variable								
Own SAT score/100			Predicted	log(Parenta	al Income)			
(1)	(2)	(3)	(4)	(5)	(6)			
1.165	1.130	0.066	0.128	0.138	0.028			
(0.196)	(0.188)	(0.112)	(0.035)	(0.037)	(0.037)			
	-0.367			0.016				
	(0.076)			(0.013)				
	-1.947			-0.359				
	(0.079)			(0.019)				
	-1.185			-0.259				
	(0.168)			(0.050)				
	-0.014			-0.060				
	(0.116)			(0.031)				
	-0.521			-0.082				
	(0.293)			(0.061)				
	0.948			-0.066				
	(0.107)			(0.011)				
	0.556			-0.030				
	-0.318			0.037				
	(0.147)			(0.016)				
	(012.17)	0.777		(01010)	0.063			
					(0.014)			
					0.020			
		0.202			(0.010)			
					0.042			
					(0.013)			
					0.079			
					(0.014)			
	(1) 1.165	$\begin{tabular}{ c c c c c }\hline (1) & (2) \\\hline 1.165 & 1.130 \\(0.196) & (0.188) \\& -0.367 \\& (0.076) \\& -1.947 \\& (0.076) \\& -1.947 \\& (0.079) \\& -1.185 \\& (0.168) \\& -0.014 \\& (0.116) \\& -0.521 \\& (0.293) \\& 0.948 \\& (0.107) \\& 0.566 \\& (0.102) \end{tabular}$	Own SAT score/100 (1) (2) (3) 1.165 1.130 0.066 (0.196) (0.188) (0.112) -0.367 (0.076) -1.947 (0.079) -1.185 (0.168) -0.014 (0.116) -0.521 (0.293) 0.948 (0.107) 0.556 (0.102) -0.318	$\begin{tabular}{ c c c c c c } \hline Own SAT score/100 & Predicted \\\hline \hline (1) & (2) & (3) & (4) \\\hline 1.165 & 1.130 & 0.066 & 0.128 \\\hline (0.196) & (0.188) & (0.112) & (0.035) \\\hline & -0.367 & (0.076) \\\hline & -1.947 & (0.079) \\\hline & -1.947 & (0.079) \\\hline & -1.185 & (0.168) \\\hline & -0.014 & (0.116) \\\hline & -0.521 & (0.293) \\\hline & 0.948 & (0.107) \\\hline & 0.556 & (0.102) \\\hline & 0.556 & (0.102) \\\hline & 0.147) & 0.777 \\\hline & (0.058) \\\hline & 0.252 & (0.077) \\\hline & 0.375 & (0.106) \\\hline & 0.330 & \end{tabular}$	$\begin{tabular}{ c c c c c c c } \hline \hline Own SAT score/100 & Predicted log(Parents (4) (5) & (1) (2) (3) & (4) (5) & (1) (4) (5) & (1) (5) & (2) & (1) (5) & (2) &$			

Note: Standard errors are shown in parentheses. The sample size is 14,238.

Table 2.5: Private School Effects: Omitted Variable Bias

© Princeton University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

What Next?

- Regression always makes sense ... in the sense that it provides best-in-class approximation to the CEF
- MFX from more elaborate non-linear models are usually indistinguishable from the corresponding regression estimates
- We're not always content to run regressions, of course, though this is usually where we start
 - Regression is our first line of attack on the identification problem; it's all about *control*
- If the regression you've got is not the one you want, that's because the underlying *relationship* is unsatisfactory
- Whats to be done with an unsatisfactory relationship?
 - Move on, grasshopper ... to IV!
- But wait: we need some *training* first

14.387 Applied Econometrics: Mostly Harmless Big Data Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.