14.452 Recitation #2

Ludwig Straub

MIT

November 2016

Ludwig Straub (MIT)

Logistics

- Class today + tomorrow, recitation next Tuesday
- Problem set solutions online
- Piazza

Plan for today

1 A general approach to Solow models

- Problem 4
- Problem 3
- 2 Local stability analysis of ODEs
 - Neoclassical Growth Model

Section 1

A general approach to Solow models

Solow model

- f(K, t) =**output** at time t given capital K
 - f(K, t) weakly concave & strictly increasing in $K \ge 0$
- Solow model:

$$\dot{K} = sf(K, t) - \delta K$$

where s > 0, $K_0 > 0$.

- Steady state equilibrium (BGP): K grows at rate $g \in \mathbb{R}$
- Asymptotic BGP, if

$$\lim_{t\to\infty}\frac{\dot{K}}{K}=g$$

or more precisely: $e^{-gt}K \rightarrow const$

Two questions

- 1 Does a BGP exist? If so, what K₀ does it require?
- 2 Does an asymptotic BGP exist? If so, what K_0 does it require?

Examples from class

- Population growth: f(K, t) = F(K, L(t)) (with CRS F)
 - Q1: Yes, if $K_0 = L_0 k^*$. Q2: Yes, for any $K_0 > 0$.
- Harrod-neutral techn. change: f(K, t) = F(K, A(t)L)
 - Q1, Q2: same
- AK technology: f(K, t) = AK
 - Q1,Q2: Yes, for any *K*₀ > 0.

Examples from the problem set

- Problem 1: $f(K, t) = L(t)^{\beta} K^{\alpha} Z^{1-\alpha-\beta}$
- Problem 3: $f(K,t) = \left(\gamma \left(A_K(t)K\right)^{(\sigma-1)/\sigma} + (1-\gamma) \left(A_L(t)L\right)^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$
- **Problem 4:** f(K, t) = q(t)F(K, L)
- ightarrow Today: answer Q1 and Q2 for Problems 3 & 4

Idea for solving general Solow model

- Guess growth rate g
- Define $k(t) \equiv K(t)/e^{gt}$
 - alternative: divide by variable proportional to e^{gt} (e.g. labor, techn.)
- Gives ODE

$$\dot{k} = s e^{-gt} f(k e^{gt}, t) - (\delta + g) k$$

• Idea: Study limiting ODE

$$\dot{k} = s\hat{f}(k) - (\delta + g)k$$

• Note: Limiting ODE = ODE in examples from class

Three steps

1 Find growth rate g s.t. $e^{-gt}f(ke^{gt}, t) \rightarrow \hat{f}(k)$ finite and positive

2 Find steady states k* of limiting ODE

$$\dot{k} = s\hat{f}(k) - (\delta + g)k \tag{1}$$

3 Get answers

(Q1) If "no limit condition" holds

$$e^{-gt}f(k^*e^{gt},t) = \hat{f}(k^*)$$
 for all t

 \Rightarrow BGP exists for $K_0 = k^*$

(Q2) If k^* globally stable: asymptotic BGP exists for any $K_0 > 0$

Subsection 1

Problem 4

Setup

• Production function

$$f(K, t) = q(t)F(K, L)$$
$$q(t) = e^{\gamma_{K}t}$$

- Ask Q1 & Q2
- Two cases:

$$\mathbf{1} \ F = K^{\alpha} L^{1-\alpha}$$

2 Any kind of F

Problem 4

Cobb-Douglas F

1 Growth rate g such that

$$e^{-gt}f(ke^{gt},t)=e^{-(g-\gamma_{K})t}F(e^{gt}k,L)
ightarrow$$
 finite & positive

$$e^{-(g-\gamma_{K})t}F(e^{gt}k,L) = e^{(\alpha g - g + \gamma_{K})t}k^{\alpha}L^{1-\alpha}$$

- Finite and positive precisely if $g = \frac{\gamma_K}{1-\alpha}$
- no limit condition holds for any k

2 Limiting ODE:

$$\dot{k} = sk^{\alpha}L^{1-\alpha} - (\delta + g)k$$

has globally stable steady state

$$k^* = \left(\frac{s}{\delta+g}\right)^{1/(1-\alpha)}L$$

3 Q1: Yes if $K_0 = k^*$. **Q2:** Yes for any $K_0 > 0$.

Problem 4

General F: BGP?

• If there is a BGP, say with $K_0 = k^*$, then **no limit condition** holds

$$e^{-(g-\gamma_{\mathcal{K}})t}F(e^{gt}k^*,L)=\hat{f}(k^*)\in(0,\infty)$$

at all times t

• Define $x \equiv e^{gt}k^*$. Thus,

$$F(x, L) = const \cdot x^{\frac{g - \gamma_K}{g}}$$

for x greater than some lower bound. Basically Cobb-Douglas...

• Hence **no BGP possible** unless exactly Cobb-Douglas for large K!

General F: asymptotic BGP?

• Turns out: Asymptotic BGP still works if *F* is *asymptotically* Cobb-Douglas, i.e.

$$\frac{d\log F(K,L)}{d\log K} \to \alpha, \text{ as } K \to \infty$$

sufficiently fast (e.g. satisfied by any CES)

General F: asymptotic BGP?

1 Growth rate $g = \frac{\gamma_{\kappa}}{1-\alpha}$

$$e^{-gt}f(ke^{gt},t) \to \underbrace{const}_{\equiv A} \times k^{\alpha}$$

2 Limiting ODE:

$$\dot{k} = sAk^{lpha} - (\delta + g)k$$

which has globally stable steady state

$$k^* = \left(\frac{sA}{\delta + g}\right)^{1/(1-\alpha)}$$

3 Q1: No. **Q2:** Yes, for any $K_0 > 0$.

Subsection 2

Problem 3

Setup

Production function

$$f(K,t) = \left(\gamma \left(A_{K}(t)K\right)^{(\sigma-1)/\sigma} + (1-\gamma) \left(A_{L}(t)L\right)^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$

where

$$A_{\mathcal{K}}(t) = e^{g_{\mathcal{K}}t}$$
 and $A_{\mathcal{L}}(t) = e^{g_{\mathcal{L}}t}$

- g_K > 0, σ < 1
- Ask Q1 and Q2
- Share of labor in national income?

Asymptotic behavior

1 Growth rate $g = g_L$ (given). Then:

$$e^{-gt}f(ke^{gt},t) = \left(\gamma \left(A_{K}(t)k\right)^{(\sigma-1)/\sigma} + (1-\gamma) \left(A_{L}(t)Le^{-gt}\right)^{(\sigma-1)/\sigma}\right)^{\sigma}$$

which approaches

$$\hat{f}(k) = (1 - \gamma)^{\sigma/(\sigma - 1)} L$$

2 Limiting ODE

$$\dot{k} = s(1-\gamma)^{\sigma/(\sigma-1)}L - (\delta+g)k$$

has globally stable steady state

$$k^* = \frac{s(1-\gamma)^{\sigma/(\sigma-1)}L}{\delta+g}$$

3 Q1: No. **Q2:** For any $K_0 > 0$.

Share of labor in national income...

• ... is given by

$$\frac{\frac{\partial Y}{\partial L}L}{Y} = \frac{\left(1-\gamma\right)\left(A_{L}(t)L\right)^{(\sigma-1)/\sigma}}{\gamma\left(A_{K}(t)K\right)^{(\sigma-1)/\sigma} + \left(1-\gamma\right)\left(A_{L}(t)L\right)^{(\sigma-1)/\sigma}}$$

• Approaches 1 if $g_K > 0$

Section 2

Linearized NGM

Linearizing ODEs

• Idea:

$$\dot{\mathbf{x}} = g(\mathbf{x})$$

with steady state

$$g(\mathbf{x}^*) = \mathbf{0}$$

• Small deviations from x*,

$$\tilde{\mathbf{x}} \equiv \mathbf{x} - \mathbf{x}^*$$

satisfy

$$\dot{\tilde{\mathbf{x}}} pprox J_{g}^{*} \cdot \tilde{\mathbf{x}}$$

where $J_g^* = J_g(\mathbf{x}^*)$ is the Jacobian of g at \mathbf{x}^* .

• \rightarrow Linear ODE system!

Ludwig Straub (MIT)

What does the linear system buy us?

• Assume **z** is a (real) eigenvector of J_g^* i.e.

$$J_g^* \mathbf{z} = \lambda \mathbf{z}$$

for some $\lambda \in \mathbb{C}$.

• **Result:** If we start with $\tilde{x}_0 = z$, the solution is

$$\tilde{\mathbf{x}}(t) = \mathbf{z} e^{\lambda t}$$

- In particular:
 - $\lambda < 0$: stable along **z**
 - λ > 0: unstable along z
 - $Re(\lambda) = 0$: linearization uninformative about local dynamics
- ODE system saddle path stable if some λ 's are > 0, some are < 0

NGM ODEs...

...were

$$\dot{k} = f(k) - (n+\delta)k - c$$
$$\dot{c} = \frac{1}{\epsilon}c \left(f'(k) - \delta - \rho\right)$$

• Steady state:

$$c^* = f(k^*) - (n+\delta)k^*$$
$$f'(k^*) = \delta + \rho$$

Jacobian

• The Jacobian here is

$$J^* = \left(\begin{array}{cc} \partial \dot{k}/\partial k & \partial \dot{k}/\partial c \\ \partial \dot{c}/\partial k & \partial \dot{c}/\partial c \end{array}\right)$$

• Computing it

$$J^* = \left(\begin{array}{cc} f'(k^*) - (n+\delta) & -1 \\ \frac{c^*}{\epsilon} f''(k^*) & 0 \end{array} \right)$$

• So the linearized ODE is

$$\left(egin{array}{c} \dot{ extsf{k}} \ \dot{ extsf{c}} \end{array}
ight) = J^* \cdot \left(egin{array}{c} extsf{ ilde{k}} \ extsf{ ilde{c}} \end{array}
ight)$$

• What are the eigenvalues?

Eigenvectors

• Characteristic polynomial

$$P(\lambda) \equiv \det (J^* - \lambda I)$$
$$P(\lambda) = \lambda^2 - \lambda (f'(k^*) - (n+\delta)) + \frac{c^*}{\epsilon} f''(k^*)$$

• Note: P(0) < 0 and therefore two eigenvalues,

- $\lambda_1 < 0$ stable, with eigenvector (z_1, z_2)
- λ₂ > 0 unstable
- Local stable arm: If $\tilde{x}_0 \propto (z_1, z_2)$, then

$$\tilde{x}(t) = \tilde{x}_0 e^{\lambda_1 t}$$

• Any other $\tilde{x}_0 \not \propto (z_1, z_2)$ has some weight λ_2 eigenvector \longrightarrow unstable!

14.452 Economic Growth Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.