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-
Logistics

e Class today + tomorrow, recitation next Tuesday
e Problem set solutions online

e Piazza
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-
Plan for today

@ A general approach to Solow models

e Problem 4
e Problem 3

® Local stability analysis of ODEs
e Neoclassical Growth Model
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A general approach to Solow models

Section 1

A general approach to Solow models
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A general approach to Solow models

Solow model

e f(K,t) = output at time t given capital K
o f(K,t) weakly concave & strictly increasing in K > 0

Solow model:

K =sf(K,t)— 6K

where s > 0, Ky > 0.

Steady state equilibrium (BGP): K grows at rate g € R

Asymptotic BGP, if _
i K
U K~ g

or more precisely: e 8'K — const
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A general approach to Solow models

Two questions

@ Does a BGP exist? If so, what Ky does it require?

® Does an asymptotic BGP exist? If so, what Ky does it require?
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A general approach to Solow models

Examples from class

e Population growth: (K, t) = F(K, L(t)) (with CRS F)
e Q1: Yes, if Ky = Lgk™. Q2: Yes, for any Ky > 0.

o Harrod-neutral techn. change: f(K,t) = F(K,A(t)L)
e Q1, Q2: same

e AK technology: f(K,t) = AK
e Q1,Q2: Yes, for any Ky > 0.
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A general approach to Solow models

Examples from the problem set

e Problem 1: f(K,t) = L(t)PK*Z1=*=F

e Problem 3: e
f(K.t) = (’y (A (H)K)TD7 1 (1) (AL(t)L)(U—l)/U>

e Problem 4: f(K,t) = q(t)F(K,L)
— Today: answer Q1 and Q2 for Problems 3 & 4
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A general approach to Solow models

|dea for solving general Solow model

e Guess growth rate g

Define k(t) = K(t)/e#*

e alternative: divide by variable proportional to e8! (e.g. labor, techn.)

Gives ODE

k = se &'f(ke®', t) — (6 + g) k

Idea: Study limiting ODE

k=sf(k)—(6+g)k

e Note: Limiting ODE = ODE in examples from class
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Three steps

© Find growth rate g s.t. e 8'f(kest, t) — (k) finite and positive
® Find steady states k* of limiting ODE
k =sf(k)— (64 g)k (1)

©® Get answers

(Q1) If “no limit condition” holds
e 8'f(k*e8t t) = f(k*) forall t

= BGP exists for Ky = k*
(Q2) If k* globally stable: asymptotic BGP exists for any Ky > 0
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A general approach to Solow models Problem 4

Subsection 1

Problem 4
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A general approach to Solow models Problem 4
Setup

e Production function
f(K,t)=q(t)F(K,L)
q(t) = e™
e Ask Q1 & Q2

e Two cases:
o F = Kthlfa
® Any kind of F
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Rk
Cobb-Douglas F

® Growth rate g such that
e 8 f (ke8t t) = e ETVKEF (8K, L) — finite & positive

e Here
e—(g—VK)fF(egtk' L) = eleg—g+rK)tju l-un

e Finite and positive precisely if g = {£
¢ no limit condition holds for any k
® Limiting ODE:
k= sk — (5 +g)k

has globally stable steady state

1/(1—w)
s
k* = L
(5+g>

©® Q1: Yesif Ko = k*. Q2: Yes for any Ky > 0.
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Problem 4
General F: BGP?

o If there is a BGP, say with Ky = k*, then no limit condition holds
e B E(e8 K L) = f(k*) € (0, 00)
at all times t

e Define x = e8tk*. Thus,
F(x, L) = const - Xz

for x greater than some lower bound. Basically Cobb-Douglas...

e Hence no BGP possible unless exactly Cobb-Douglas for large K'!

Ludwig Straub (MIT) 14.452 2016 November 2016 14 /27




Rk
General F: asymptotic BGP?

e Turns out: Asymptotic BGP still works if F is asymptotically
Cobb-Douglas, i.e.

dlog F(K, L)

—a, as K —
diog K ®, as 0

sufficiently fast (e.g. satisfied by any CES)
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Rk
General F: asymptotic BGP?

©® Growth rate g = %<

e &'f(ke8', t) — const x k"
o~
=A

® Limiting ODE:
k = sAk* — (6+ g)k

which has globally stable steady state

o+g

©® Q1: No. Q2: Yes, for any Ky > 0.
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A general approach to Solow models Problem 3

Subsection 2

Problem 3
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A general approach to Solow models Problem 3
Setup

Production function
- _ o/(c—1)
f(K t)= <’y (AK(t)K)(tr y/o 1-7) (AL(t)L)(U 1)/0)

where
Ax(t) = e8€" and A, (t) = e8!

gK>0,0'<1

Ask Q1 and Q2

Share of labor in national income?

Ludwig Straub (MIT) 14,452 2016 November 2016 18/ 27



e
Asymptotic behavior

® Growth rate g = g; (given). Then:

e 8 (ket", 1) = (7 (Ak (D)) D7 4 (1) (Au(t)Lest) /)

which approaches

(k) = (1= )7/ L
® Limiting ODE
k=s(1—9)7 VL —(6+g)k
has globally stable steady state

k¥ = 5(1 - ’Y)U/(U_I)L
i+g

©® Q1: No. Q2: For any Ky > 0.
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A general approach to Solow models Problem 3

Share of labor in national income...

e ... is given by

L (1) (A()L) M7
7 (A ()K) D7 4 (1 — ) (AL(t)L) D77

<<

e Approaches 1 if gx >0
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Linearized NGM

Section 2

Linearized NGM
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Linearizing ODEs

o |dea:
x = g(x)
with steady state
g(x*) =0
e Small deviations from x*,
x=x—x"
satisfy
X~ Jg - %

where J; = J;(x*) is the Jacobian of g at x*.

e — Linear ODE system!
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What does the linear system buy us?

e Assume z is a (real) eigenvector of J; i.e.
*,
Jpz =Nz

for some A € C.

e Result: If we start with Xg = z, the solution is

At

x(t) = ze

e In particular:

e A < 0: stable along z
e A > 0: unstable along z
e Re(A) = 0: linearization uninformative about local dynamics

e ODE system saddle path stable if some A's are > 0, some are < 0
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NGM ODEs...

® ...were

o Steady state:
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Linearized NGM

Jacobian

e The Jacobian here is

Jt =

e Computing it
s = (

e So the linearized ODE is

e What are the eigenvalues?
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Linearized NGM

Eigenvectors

e Characteristic polynomial

P(A) = det (J* — Al)

P(A) =A% — A (f'(k*) — (n+6)) + %*f”(k*)

* Note: P(0) < 0 and therefore two eigenvalues,

e A1 < 0 stable, with eigenvector (z1, z2)
e Ay > 0 unstable

e Local stable arm: If % & (z1, z), then

%(t) = peMt

o Any other %y % (z1, z2) has some weight A eigenvector — unstable!
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