Problem set 5. 14.461 Fall 2012.

Ivan Werning

October 31, 2012

References:

- Ljungqvist L., and Thomas J. Sargent (2000), "Recursive Macroeconomic Theory," - sections 22.13 for Problem 1.
- 2. Mailath J. George and Larry Samuelson (2006), "Repeated Games and Reputations," – section 3.6 for Problem 2.

1 Characterization of V.

Consider a government playing repeated game against public. At time t let y_t be government action and x_t – action chosen by the public. Action sets are compact. Government discounts at rate β stage game payoff U(x, y). Agents could condition their actions on the outcome of public correlation device w_t .

Let σ be a pure strategy of the government, i.e. a mapping from history of actions and outcomes of correlation device at time t, h^t , to action y_t . We analyse pure SPE of the game and suppose that public chooses x_t myopically according to function h, $x_t = h(y_t)$.¹ Define by H(x), myopic best response of government to public action x. Government's expected² discounted utility is

$$v_0^{\sigma} = (1-\beta)\mathbb{E}^w \sum_{t=0}^{\infty} \beta^t U(x_t, y_t).$$

$$(1.1)$$

¹Given particular environment it's usually easy to put restrictions on primitives, so that best response correspondence is indeed a function. Since this is not the focus of the problem we directly assume that h is a function.

²Expectation is with respect to correlation device outcomes.

Follow the steps below to characterize the set $V \equiv \{v : v = v_0^{\sigma}, \sigma \in \text{SPE}\}.$

- 1. Reduce the problem to the characterization of extreme points of V, i.e. show that $V = [\underline{v}, \overline{v}]$ for some $\underline{v}, \overline{v}$.
- 2. Write down the program for finding \underline{v} . In particular, show that $\underline{v} = U(h(\underline{y}), H(h(\underline{y}))$ for some \underline{y} . Does the solution to the program depend on \overline{v} ? Did you use convexity of V at any step?
- 3. Write down the program for finding \bar{v} . In particular, show that $\bar{v} = U(h(\bar{y}), \bar{y})$.
- 4. Design a simple algorithm for computing V that works for sufficiently patient government. How do you adjust your algorithm to accomodate impatient govenrement?

2 Convexity without Public Correlation (optional).

Suppose that in previous problem no public correlation device is available. Take any v in convex hull of V and suppose that v > v' where v' is utility from static Nash equilibrium of the game. We show that for sufficiently big β there is SPE σ with $v_0^{\sigma} = v$.³

- 1. Relate this fact to the solution to the first problem. In particular, we don't prove that V is convex but that it gets convex in the limit of β going to 1. Does the argument in problem 1 go through with this weaker statement?
- 2. Define $\zeta(h^t)$ by $\zeta^0 = 0$

$$\zeta^t(h^t) = (1 - \beta) \sum_{\tau=0}^{t-1} (U(x^t, y^t) - v').$$
(2.1)

Interpret $\zeta^t(h^t)$. Specify strategy profile such that at each time t static Nash equilibrium profile giving v' is played if either deviation occured in past periods or $\zeta^t(h^t) \ge (1 - \delta^{t+1})(v - v').$

3. Show that for high β for all histories $\zeta^t(h^t) < v - v'$ and for on-equilibrium-path histories $\zeta^t(h^t) \ge (1 - \delta^t)(v - v')$. What is the expected utility of such strategy for the government.

³The statement is true for all v in convex hull of V and reasoning for $v < v'_1$ is similar but more cumbersome.

- 4. Notice that given your interpretation of $\zeta^t(h^t)$ in part 2 it's natural to choose threshold for strategy $(1 \delta^t)(v v')$ instead of $(1 \delta^{t+1})(v v')$. Why this does not work.
- 5. Prove that strategy specified in part 2 is an SPE for high β .

3 Problem 22.3 from Ljungqvist, Sargent.

14.161 Advanced Macroeconomics I Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.