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1 Framework

Actions, Outcomes and Payoffs. There are two possible regimes, the status quo

and an alternative. There is a measure-one continuum of agents, indexed by i ∈ [0, 1].
Each agent can choose between an action that is favorable to the alternative regime

and an action is favorable to the status quo. We call these actions, respectively,

“attack” and “not attack”. All agents move simultaneously.

We denote the regime outcome with R ∈ {0, 1}, where R = 0 represents survival of
the status quo and R = 1 represents collapse. We similarly denote the action of an

agent with ai ∈ {0, 1}, where ai = 0 represents “not attack” and ai = 1 represents

“attack”.

The payoff from not attacking is normalized to zero. The payoff from attacking is

b > 0 if the status quo is abandoned and −c < 0 otherwise. Hence, the utility of

agent i is

ui = ai(bR− c).
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Finally, the status quo is abandoned (R = 1) if and only if

A ≥ θ,

where A ≡ R
aidi ∈ [0, 1] denotes the mass of agents attacking and θ ∈ R para-

meterizes the exogenous strength of the status quo (or the quality of the economic

fundamentals). Let θ ≡ 0 and θ ≡ 1.
Complementarity. Note that the actions of the agents are strategic complements,

since it pays for an individual to attack if and only if the status quo collapses and, in

turn, the status quo collapses if and only if a sufficiently large fraction of the agents

attacks. This coordination problem is the heart of the model. To see this more clearly,

rewrite the payoff of agent i as

ui = U(ai, A, θ) =

(
ai(b− c) if A ≥ θ

−aic if A < θ

Assuming θ is known, the best response is

g(A, θ) = arg max
a∈{0,1}

U(ai, A, θ) =

(
1 if A ≥ θ

0 if A < θ

Note that both U and g are increasing in A, so that we have both a positive externality

and a complementarity. In particular, the complementarity is of the “strong” form

we discussed in the first lecture.

Interpretations. This simple model can capture the role of coordination and

multiplicity of equilibria in a variety of interesting applications. For instance, in

models of self-fulfilling currency crises (Obstfeld, 1986, 1996; Morris and Shin, 1998),

there is a central bank interested in maintaining a currency peg and a large number

of speculators, with finite wealth, deciding whether to attack the currency or not. In

this context, a “regime change” occurs when a sufficiently large mass of speculators

attacks the currency, forcing the central bank to abandon the peg.

In models of self-fulling bank runs, a “regime change” occurs once a sufficiently large

number of depositors decide to withdraw their deposits, relative to liquid resources
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available to the system, forcing the bank to suspend its payments. Similarly, in

models of self-fulfilling debt crises (Calvo, 1988; Cole and Kehoe, 1996; Morris and

Shin; 2003), a “regime change” occurs when a lender fails to obtain refinancing by a

sufficiently large fraction of its creditors.

Finally, Atkeson (2000) interprets the model as describing riots. The potential

rioters may or may not overwhelm the police force in charge of containing social

unrest depending on the number of the rioters and the strength of the police force.

Information. Suppose for a moment that θ were commonly known by all agents.

For θ ≤ θ, the fundamentals are so weak that the regime is doomed with certainty

and the unique equilibrium is every agent attacking. For θ > θ, the fundamentals are

so strong that the regime can survive an attack of any size and the unique equilibrium

is every agent not attacking.

For intermediate values, θ ∈ (θ, θ], the regime is sound but vulnerable to a suffi-
ciently large attack and there are multiple equilibria sustained by self-fulfilling ex-

pectations. In one equilibrium, individuals expect everyone else to attack, they then

find it individually optimal to attack, the status quo is abandoned and expectations

are vindicated. In another, individuals expect no one else to attack, they then find

it individually optimal not to attack, the status quo is spared and expectations are

again fulfilled. The interval (θ, θ] thus represents the set of “critical fundamentals”

for which multiple equilibria are possible under common knowledge.

Implicitly, each equilibrium is sustained by different self-fulfilling expectations about

what other agents do. With common knowledge, in equilibrium individuals can per-

fectly forecast each other actions and coordinate on multiple courses of action. Fol-

lowing Morris and Shin (1998), we assume that θ is never common knowledge and

that individuals instead have private noisy information about θ. Private informa-

tion serves as an anchor for individual’s actions that may avoid the indeterminacy of

expectations about others actions.

Initially agents have a common prior about θ; for simplicity, we let this prior be
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(degenerate) uniform over the entire real line. Agent i then observes a private signal

xi = θ + ξi,

where the idiosyncratic noise ξi is N (0, σ2x) with σx > 0 and is independent of θ. The
signal xi is thus a sufficient statistic for the private information of an agent.

Note that because there is a continuum of agents the information contained by

the entire economy, (xi)i∈[0,1] , is enough to infer the fundamental θ. However, this

information is dispersed throughout the population, which is the key feature of the

Morris-Shin framework.

Finally, agents may also have access to some public information. In particular,

agents observe an exogenous public signal z = θ+ v, where v ∼ N (0, σ2z). The public
noise v is distributed independently of θ and the private noise ξ.

Equilibrium. An economy is parametrized by the standard deviations (σx, σz),

or equivalently the precisions (αx, αz), where αx = σ−2x and αz = σ−2z . A symmetric

Bayesian equilibrium is defined as follows

Definition 1 An equilibrium is a strategy a(.) and an aggregate attack A(.) such that:

a(x, z) ∈ argmax
a
E [U(a, A(θ, z), θ) | x, z]

A(θ, z) =

Z
a(x, z)

√
αxφ (

√
αx[x− θ]) dx.

2 Monotone Equilibria

We start by considering monotone or threshold equilibria, that is, equilibria in which

a(x, z) is monotonic in x.

In a monotone equilibrium, for any realization of z, there is a threshold x∗(z) such

that an agent attacks if and only if x ≤ x∗(z). By implication, the aggregate size

of the attack is decreasing in θ, so that there is also a threshold θ∗(z) such that the

status quo is abandoned if and only if θ ≤ θ∗(z). A monotone equilibrium is identified
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by x∗ and θ∗. In step 1, below, we characterize the equilibrium θ∗ for given x∗. In

step 2, we characterize the equilibrium x∗ for given θ∗. In step 3, we characterize both

conditions and examine equilibrium existence and uniqueness.

Step 1. For given realizations of θ and z, the aggregate size of the attack is given

by the mass of agents who receive signals x ≤ x∗(z). That is,

A(θ, z) = Φ (
√
αx(x

∗(z)− θ)) ,

where αx = σ−2x is the precision of private information. Note that A(θ, z) is decreasing

in θ, so that regime change occurs if and only if θ ≤ θ∗(z), where θ∗(z) is the unique

solution to

A(θ∗(z), z) = θ∗(z).

Rearranging we obtain:

x∗(z) = θ∗(z) +
1√
αx

Φ−1(θ∗(z)). (1)

Step 2. Given that regime change occurs if and only if θ ≤ θ∗(z), the payoff of an

agent is

E [ U(a, A(θ, z), θ) | x, z ] = a(bPr [θ ≤ θ∗(z) | x, z]− c).

Let αx = σ−2x and αz = σ−2z denote, respectively, the precision of private and public

information. The posterior of the agent is

θ | x, z ∼ N ¡
δx+ (1− δ)z , α−1

¢
,

where δ ≡ αx/(αx+αz) is the relative precision of private information and α ≡ αx+αz

is the overall precision of information. Hence, the posterior probability of regime

change is

Pr [ θ ≤ θ∗(z) | x, z ] = 1− Φ
¡√

α(δx+ (1− δ)z − θ∗(z))
¢
,

which is monotonic in x. It follows that the agent attacks if and only if x ≤ x∗(z),

where x∗(z) solves the indifference condition

bPr [ θ ≤ θ∗(z) | x∗(z), z ] = c.
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Substituting the expression for the posterior and the definition of δ and α, we obtain:

Φ

µ√
αx + αz

µ
αx

αx + αz
x∗(z) +

αz

αx + αz
z − θ∗(z)

¶¶
=

b− c

b
. (2)

Step 3. Combining (1) and (2), we conclude that θ∗(z) can be sustained in equi-

librium if and only if it solves

G (θ∗(z), z) = g, (3)

where g =
p
1 + αz/αxΦ

−1 (1− c/b) and

G(θ, z) ≡ αz√
αx
(z − θ) + Φ−1 (θ) .

With θ∗(z) given by (3), x∗(z) is then given by (1). We are now in a position to

establish existence and determinacy of the equilibrium by considering the properties

of the function G. Note that, for every z ∈ R, G(θ, z) is continuous in θ, with

G(θ, z) = −∞ and G(θ, z) =∞, which implies that there necessarily exists a solution

and any solution satisfies θ∗(z) ∈ (θ, θ). This establishes existence; we now turn to
uniqueness. Note that

∂G(θ, z)

∂θ
=

1

φ(Φ−1 (θ))
− αz√

αx

Since maxw∈R φ(w) = 1/
√
2π then if αz/

√
αx ≤

√
2π we have that G is strictly

increasing in θ, which implies a unique solution to (3). If instead αz/
√
αx >

√
2π,

then G is non-monotonic in θ and there is an interval (z, z) such that (1) admits

multiple solutions θ∗(z) whenever z ∈ (z, z) and a unique solution otherwise. We
conclude that monotone equilibrium is unique if and only if αz/

√
αx ≤

√
2π.

We summarize these results in the following proposition.

Proposition 2 (Morris-Shin) Let σx and σz denote the standard deviations of the

private and the public noise, respectively. There always exists a monotone equilibrium

and it is unique if and only if σx/σ2z ≤
√
2π.
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Finally, consider the limits as σx → 0 for given σz, or σz → ∞ for given σx. In

either case, αz/
√
αx → 0 and

p
(αx + αz) /αx → 1. Condition (3) then implies that

θ∗(z) → bθ = 1 − c/b, for all z. This proves the following result, which we refer to as

the Morris-Shin limit result :

Proposition 3 (Morris-Shin limit) In the limit as either σx → 0 for given σz, or

σz → ∞ for given σx, there is a unique monotone equilibrium in which the regime

changes if and only if θ ≤ bθ, where bθ = 1− c/b ∈ (θ, θ).

3 Iterated Dominance Argument

The results above established that there exists a unique monotone equilibrium when-

ever the noise in private information is small enough. These results, however, left

open the possibility that there are other non-monotone equilibria. We now prove the

much stronger result that there is no other equilibrium and, what is more, that the

equilibrium is dominance solvable.

To simplify the exposition, consider the case that there is no public information:

σz = ∞ (αz = 0), implying δ = 1 and α = αx. We can thus drop z and denote the

strategy by a(x) and the aggregate attack by A(θ).

For any bx ∈ [−∞,+∞], let Abx(θ) denote the size of aggregate attack when (almost
every) agent attacks if and only if x ≤ bx.Next, define the function

V (x, bx) = E [ U(1, Abx(θ), θ)− U(0, Abx(θ), θ) | x ] .
This is the utility difference between attacking and not attacking for an agent who

has private information x and expects the other agents to attack if and only if their

signals fall below bx. In our model,
Abx(θ) = Φ (

√
αx [bx− θ])

and

V (x, bx) = b− bΦ
³√

αx[x− bθ]´− c,
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where bθ = bθ (bx) is the unique solution to Abx(bθ) = bθ, or equivalently the inverse of
bx = bθ + 1√

αx
Φ−1(bθ).

Note bθ is increasing in bx. It follows that V (x, bx) is increasing in bx : The more aggres-
sive the other agents are, the higher the expected payoff from attacking. Moreover,

V (x, bx) is decreasing in x : The higher the private signal, the lower the expected

payoff from attacking.

Next, note that V (x, bx) is continuous in x and satisfies V (x, bx) → b − c > 0 as

x → −∞ and V (x, bx) → −c < 0 as x → +∞. We can thus define a function h

such that x = h(bx) is the unique solution to V (x, bx) = 0 with respect to x. The

interpretation of h(bx) is simple: When agents j 6= i attack if and only if xj ≤ bx, agent
i finds it optimal to attack if and only if xi ≤ h(bx). Because V (x, bx) is continuous in
both arguments, decreasing in x, and increasing in bx, the function h(bx) is continuous
and increasing in bx. Finally, note that h has a unique fixed point x∗ = h(x∗) and this

fixed point is indeed the threshold of the unique monotone equilibrium we constructed

in the previous section.

Construct a sequence {xk}∞k=0 by x0 = −∞ and xk = h(xk−1) for all k ≥ 1. In

particular, letting θk−1 be the solution to

xk−1 = θk−1 +
1√
αx

Φ−1(θk−1),

we have

V (x, xk−1) = b− bΦ
¡√

αx[x− θk−1]
¢− c

and thus

xk = θk−1 +
1√
αx

Φ−1
µ
b− c

b

¶
.

Hence, x0 = −∞, θ0 = 0, x1 =
1√
αx
Φ−1

¡
b−c
b

¢
, and so on. Clearly, the sequence

{xk}∞k=0 is increasing and bounded above by x∗.Hence, the sequence {xk}∞k=0 converges
to some x. By continuity of h, the limit x must be a fixed point of h. But we already

proved that h has a unique fixed point. Hence, x = x∗.
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Next, construct a sequence {xk}∞k=0 by x0 = −∞ and xk = h(xk−1) for all k ≥ 1.
Note that this sequence is decreasing and bounded below by x∗. Hence, the sequence

{xk}∞k=0 converges to some x. By continuity of h, the limit x must be a fixed point of
h. But we already proved that h has a unique fixed point. Hence, x = x∗.

But, what is the meaning of the sequences we constructed? Consider x1. If nobody

else attacks, the agent finds it optimal to attack if and only if x ≤ x1. By complemen-

tarity, if some people attack, the agent finds it optimal to attack at least for x ≤ x1.

That is, for x ≤ x1, attacking is dominant. Next, consider x2. When other agents

attack if and only if it is dominant for them to do so, that is, if and only if x ≤ x1,

then it is optimal to attack if and only if x ≤ x2. By complementarity, if other agents

attack at least for x ≤ x1, then it is optimal to attack at least for x ≤ x2. That is, for

x ≤ x2, attacking becomes dominant after the first round of deletion of dominated

strategies. Similarly, for x ≤ xk−1, attacking becomes dominant after the k−1 round
of deletion of dominated strategies. Hence, {xk}∞k=0 represents iterated deletion of
dominated strategies “from below”. Similarly, {xk}∞k=0 represents iterated deletion of
dominated strategies “from above”.

To recap, the only strategies that have survived k rounds of iterated deletion of

dominated strategies are functions a such that a(x) = 1 for all x ≤ xk and a(x) = 0

for x > xk; for x ∈ (xk, xk), the value of a(x) is still “free” at the k-th round. But we
proved that both xk and xk converge to x∗ as k → ∞. Hence, in the limit, the only

strategy that survives is the function a such that a(x) = 1 for x ≤ x∗ and a(x) = 0

for x > x∗, which is precisely the strategy in the monotone equilibrium.

As long as αz/
√
αx ≤

√
2π, the above result extends to the presence of public

information. (Do it as an exercise.) We conclude:

Proposition 4 If σx/σ2z ≤
√
2π, there is a unique equilibrium. This equilibrium is

the monotone equilibrium described before and it is solvable by iterated deletion of

dominated strategies.

When instead αz/
√
αx >

√
2π, the argument breaks in the following respect. For
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some realizations of the public signal, the equation V (x, x) = 0 has three solutions

(equivalently, h has three fixed points); this is what we showed in the previous section.

The sequences {xk}∞k=0 and {xk}∞k=0 are still well defined as above. But now their
limits x and x do not coincide. Instead, x is the lowest of the three solutions to

V (x, x) = 0 and x is the highest of the three. Hence, the two monotone equilibria

that we constructed in the previous section represent the least and most aggressive

equilibria of the game. It is unclear whether there are also other intermediate, non-

monotone equilibria.
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