14.462 Problem Set 2

Problem 1

In this problem you will replicate Figures on pages 12 and 14 of the lecture notes (demand shocks, part I). Consider a stochastic growth model with preferences and technology given by

$$U(C_t, N_t) = \frac{1}{1 - \sigma} C_t^{1 - \sigma} - \frac{1}{1 + \eta} N_t^{1 + \eta},$$

$$A_t F(K_{t-1}, N_t) = A_t K_{t-1}^{\alpha} N_t^{1 - \alpha}.$$

The process for A_t is as follows

$$A_t = e^{a_t},$$
$$a_t = \rho a_{t-1} + \epsilon_t.$$

Use parameters

$$\begin{array}{rcl} \beta & = & 0.99, & \delta = 0.025, \\ \eta & = & 1, & \sigma = 1, \\ \alpha & = & 0.36, & \rho = 0.95. \end{array}$$

You can use the Matlab package Dynare (http://www.cepremap.cnrs.fr/dynare/).

(i) Setup the planner problem and derive the first order conditions.

(ii) Derive impulse response functions for a, i, c, y, n for the model above.

(iii) Replace the technology process with

$$a_t = \rho a_{t-1} + \epsilon_{t-3}.$$

Derive impulse response functions for a, i, c, y, n for the new model.

(iv) Try to change the elasticity of intertemporal substitution σ and see how it affects equilibrium dynamics.

(v) (OPTIONAL) Introduce quadratic adjustment costs in labor inputs:

$$G\left(N_{t+1}, N_t\right) = \frac{\xi}{2} \left(\frac{N_{t+1} - N_t}{N_t}\right)^2.$$

Characterize the equilibrium dynamics for different values of ξ .

Cite as: Olivier Blanchard and Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Problem 2

Consider an economy where productivity follows the process

$$x_t - x_{t-1} = \rho \left(x_{t-1} - x_{t-2} \right) + \epsilon_t$$

Agents observe all past values $\{x_{t-1}, x_{t-2}, \ldots\}$ and a signal regarding the current shock

$$s_t = \epsilon_t + e_t.$$

Suppose consumers follow the forward-looking rule

$$c_t = \mathrm{E}\left[\sum_{j=0}^{\infty} \beta^j x_{t+j} | \mathcal{J}_t\right],$$

where \mathcal{J}_t is the consumers' information set.

(i) Derive equilibrium consumption dynamics in terms of the shocks ϵ_t and e_t .

(ii) Suppose the econometrician information set at time t, \mathcal{J}_t^E , is given by $\{x_{t-1}, x_{t-2}, ...\}$ and $\{c_t, c_{t-1}, ...\}$. Write down a VAR representation for the joint behavior of x_{t-1} and c_t :

$$\begin{pmatrix} c_t \\ x_{t-1} \end{pmatrix} = \sum_{j=1}^{\infty} A_j \begin{pmatrix} c_{t-j} \\ x_{t-1-j} \end{pmatrix} + \begin{pmatrix} \eta_{1,t} \\ \eta_{2,t} \end{pmatrix}.$$

(Hint: careful when defining the innovation to the x_{t-1} equation, notice that $E\left[\epsilon_t | \mathcal{J}_t^E\right] \neq 0$). Argue that the econometrician can identify s_t but cannot separately identify ϵ_t and e_t from $(\eta_{1,t}, \eta_{2,t})$.

(iv) Suppose now the econometrician information set is $\{x_t, x_{t-1}, ...\}$ and $\{c_t, c_{t-1}, ...\}$. Write down a VAR representation for the joint behavior of x_t and c_t

$$\begin{pmatrix} c_t \\ x_t \end{pmatrix} = \sum_{j=1}^{\infty} A_j \begin{pmatrix} c_{t-j} \\ x_{t-j} \end{pmatrix} + \begin{pmatrix} \eta_{1,t} \\ \eta_{2,t} \end{pmatrix}.$$

Discuss how an econometrician can impose identifying restrictions to estimate and recover the shocks e_t and ϵ_t from the innovations $(\eta_{1,t}, \eta_{2,t})$.

Problem 3

Consider an economy populated by a continuum of households [0, 1] located on different islands.

Each household has an endowment $\bar{x} = 1$ of gold. Each household is made of a consumer and a producer. At the beginning of the day the producer sets the price p_i . Then the consumer *i* travels to an island *j*, randomly assigned. Then the preference shock α_i is realized. The consumer observes α_i and buys c_i units of the good produced in island *j*. At the same time the producer is selling y_i

Cite as: Olivier Blanchard and Guido Lorenzoni, course materials for 14.462 Advanced Macroeconomics II, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

to some other consumer. Then the consumer returns home and consumes the gold:

$$x_i = \bar{x} - p_j c_i + p_i y_i.$$

The central imperfection is that agents do not observe y_i (sales) at the time of making the purchases c_i .

Preferences are as follows

$$E\left[u\left(c_{i},\alpha_{i}\right)+w\left(x_{i}\right)-v\left(n_{i}\right)\right]$$

where c_i is consumption, x_i

$$u(c_i, \alpha_i) = \alpha_i c_i - \frac{1}{2} c_i^2$$
$$w(x_i) = x_i - \frac{1}{2} x_i^2$$

and $v(n_i)$ is a convex function.

The production function in each island is linear and given by:

$$y_i = n_i$$
.

For simplicity, let c_i, x_i and n_i vary in $(-\infty, +\infty)$, and disregard all non-negativity constraints.

The preference shocks are generated by:

$$\alpha_i = \alpha + \epsilon_i$$

where α and ϵ_i are independent gaussian random variables with mean zero and variances σ_{α}^2 and σ_{ϵ}^2 and $\int \epsilon_i di = 1$.

Consider a symmetric equilibrium where $p_i = p$. For the purpose of this exercise we will fix p (i.e. disregard the optimality condition for prices at the beginning of the period).

(i) Write down the consumer first order condition and derive the optimal choice of c_i as a function of α_i and $E_i[y_i]$.

(ii) Show that p determines the degree of strategic complementarity in spending. Comment.

(iii) Find the equilibrium output y in the case of perfect information.

(iv) Go back to the case where agents only observe α_i . Find a linear equilibrium of the type

 $c = \psi \alpha$

and show that –for a given value of $p-\psi$ is larger for larger values of $\frac{\sigma_{\alpha}^2}{\sigma^2}$.

Consider the case where agents can observe both α_i and a public signal of the preference shock

 $s=\alpha+e$

where e is gaussian, independent of α and ϵ_i , with mean zero and variance σ_e^2 .

(v) Characterize an equilibrium of the type

$$c = \psi_a \alpha + \psi_s s$$

(Please use the notation: $E[\alpha|\alpha_i, s] = \beta_{\alpha}\alpha_i + \beta_s s$)

(vi) Show that –for a given value of p– the economy is very responsive to the public signal shock e when β_s is large and β_{α} is small.

(vii) Comment on the welfare implications, is the presence of the signal s always desirable?

Problem 4

Consider the version of the Lucas (1972) model derived in class.

(i) Derive an expression for the constant ξ or (which is the same) for the average price level \bar{p} . (Hint: you can take unconditional expectations on both sides of the labor supply equation to get

$$E[N_{i,t}] = E\left[\frac{P_{i,t}}{P_{j,t+1}}(1+x_{t+1})\right],$$

substitute the equilibrium prices...)

(ii) Study the effect of changing σ_{ϵ}^2 on average labor supply and average output, interpret.

(iii) (OPTIONAL) Consider a planner who uses a utilitarian welfare function (i.e. who maximizes $E\left[\int C_{i,t}di - \frac{1}{2}\int N_{j,t}^2dj\right]$ each period). What is the level of σ_{ϵ}^2 that maximizes welfare?