Problem Set 7

14.462 Topics in Macro

Spring 2007

Problem 1

Consider the model in Lorenzoni and Walentin, that we have seen in class (see slides for notation). Consider a simplified version where $\gamma = 0$ and $\beta_E = \beta_C = \beta$ and $\xi = 0$ (no adjustment costs). The production function is Cobb-Douglas.

Consider the case where there is no aggregate shocks: A = 1. Suppose the initial condition for the economy is that the entrepreneurs have initial capital K_0 and zero liabilities $B_0 = 0$. We will study the transitional dynamics of this economy. We will use the same approach as in the paper defining a recursive equilibrium, let's try the simple state space X = K (this is almost right, except at date 0, you can fix this problem as you prefer).

- 1. Define the entrepreneurs problem in recursive term and derive the optimality conditions and envelope condition.
- 2. Let K^* be such that $\beta \left[(K^*)^{\alpha 1} + 1 \delta \right] = 1$. Let us conjecture that H(K) (the law of motion for aggregate capital) is a non-decreasing function and that \hat{K} is such that $H\left(\hat{K}\right) = K^*$. Argue that $\phi(K)$ is a non-increasing function, with $\phi(K) = 1$ for $K \ge \hat{K}$, and show that the optimal contract involves

$$k' = \frac{(1-\theta) R (H (K)) k}{1-\beta R (H (K))}$$

for $K < \hat{K}$, and is indeterminate if $K \ge \hat{K}$.

- 3. Show that in equilibrium the economy converges in finite time to K^* .
- 4. Suppose $\gamma > 0$ (there is a positive probability of death), show that the conclusion in (3) survives.
- 5. Suppose $\gamma > 0$ AND the entrepreneurs' debt is not allowed to be contingent on death $(b_L = b$ in the notation of the paper). Show that the model can have a steady state with $K < K^*$.

Problem 2

Consider the same model as in Problem 1. Now we allow for a binary, i.i.d. productivity shock. Each period with probability π^h the productivity is A^h and with probability π^l is A^l . The initial condition is still K_0 and zero liabilities.

- 1. Define a recursive equilibrium with the appropriate state space (I suggest you still use only K and s, instead of K, B and s, and fix the first period at the end).
- 2. Define the entrepreneur's problem and derive the first order conditions.
- 3. Construct a recursive equilibrium where $\phi(K, h)$ and $\phi(K, l)$ are both decreasing functions and where $\phi(\hat{K}^s, s) = 1$ for two cutoffs \hat{K}^s , s = l, h.
- 4. Show that in equilibrium there is a region (K_1, K_2) such that the optimal contract has

$$b'(s')(k,X) < \theta R(H(X))$$

and

$$\phi(X) = \phi(H(X, s'))$$

if X = (K, s), s = l, and s' = h.

5. Characterize the economy's dynamics, showing that (in some sense) volatility falls as the economy grows.