14.581 International Trade

1 Trade Agreements

- Given the strong and robust predictions made by theories of trade agreements (the GATT/WTO in particular) it is surprising how little empirical work there is on testing these theories.
- Recall that the key claim in a series of Bagwell and Staiger papers is that the key international externality that trade policies impose is the terms-oftrade externality, and further that the key principles of the GATT/WTO seem well designed to force member countries to internalize these externalities.
- 2 recent papers take nice steps towards filling this gap:
 - 1. Broda, Limao and Weinstein (AER, 2008)
 - 2. Bagwell and Staiger (AER, 2010)

1.1 Broda, Limao and Weinstein (2008)

• With quasi-linear preferences across goods g, social welfare is given by (where π is producer surplus, ψ is consumer surplus and r is tariff revenue):

$$W = 1 + \sum_{g} [\pi_g(p_g) + r_g(p_g) + \psi_g(p_g)]$$
(1)

• Then (as in Johnson, 1954) the optimal tariff is given by the inverse (of the rest of the world's) export supply elasticity:

$$\tau_g^{opt} = \omega_g \equiv \frac{dp_g^* m_g^*}{dm_g^* p_g^*} \tag{2}$$

• In Grossman and Helpman (JPE 1995)—basically GH (1994) extended to a 2-country, strategically interacting, non-SOE world—the prediction is (where z is the inverse import penetration ratio and σ is the elasticity of import demand):

$$\tau_g^{GH} = \omega_g + \frac{I_g - \alpha}{a + \alpha} \frac{z_g}{\sigma_q} \tag{3}$$

 $^{^1\}mathrm{The}$ notes are based on lecture slides with inclusion of important insights emphasized during the class.

• To test this, need estimates of ω_g . Postulate the following system of constant elasticity import demand and export supply (of variety v in good g into country i in year t) where s is a share (and $\Delta^{k_{ig}}$ differences across both time and an ig pair):

$$\Delta^{k_{ig}} \ln s_{igvt} = -(\sigma_{ig} - 1)\Delta^{k_{ig}} \ln p_{ivgt} + \varepsilon^{k_{ig}}_{ivgt} \tag{4}$$

$$\Delta^{k_{ig}} \ln p_{igvt} = \frac{\omega_{ig}}{1 + \omega_{ig}} \Delta^{k_{ig}} \ln s_{ivgt} + \delta^{k_{ig}}_{ivgt} \tag{5}$$

- BLW estimate this system through the same 'identification through heteroskedasticity' idea as Feenstra (AER, 1994) or Broda and Weinstein (QJE, 2006). Basic idea is that if $E[\varepsilon_{ivgt}^{k_{ig}}\delta_{ivgt}^{k_{ig}}] = 0$ and there is heteroskedasticity and there are more than 3 exporting countries, then can identify ω_{ig} and σ_{ig} .
- BLW then, having estimated ω_{ig} , estimate the relationship between tariffs and ω_{ig} .
- But for which countries? They do this on countries that (in certain time periods) were not part of the GATT/WTO and hence were presumably free to charge their unilaterally optimal tariff.

	GATT/WTO	Product	on data	Tariff data ^a	Trade datab
	Accession date	Source	Years	-	
Algeria				93	93-03
Belarus				97	98-03
Bolivia ^c	8-Sep-1990	UNIDO	93	93	93-03
China	11-Dec-2001	UNIDO	93	93	93-03
Czech ^d	15-Apr-1993			92	93-03
Ecuador	21-Jan-1996	UNIDO	93	93	94-03
Latvia	10-Feb-1999	UNIDO	96	97	94-03
Lebanon				00	97-02
Lithuania	31-May-2001	UNIDO	97	97	94-03
Oman	9-Nov-2000			92	94-03
Paraguay	6-Jan-1994			91	94-03
Russia				94	96-03
Saudi Arabia	11-Dec-2005			91	93-03
Taiwan	1-Jan-2002	UNIDO	96	96	92-96
Ukraine		UNIDO	97	97	96-02

TABLE 1—DATA SOURCES AND YEARS

^a All tariff data are from TRAINS. Countries are included if we have tariff data for at least one year before accession (GATT/WTO).

^b Except for Taiwan, all trade data are from COMTRADE. For Taiwan, data are from TRAINS. ^c The date of the tariffs for Bolivia is post-GATT accession but those tariffs were set before GATT accession and unchanged between 1990–1993.

^dThe Czech Republic entered the GATT as a sovereign country in 1993. Its tariffs in 1992 were common to Slovakia with which it had a federation, which was a GATT member. So it is possible that the tariffs for this country do not reflect a terms-of-trade motive. Our results by country in Table 9 support this. Moreover, as we note in Section IVC, the pooled tariff results are robust to dropping the Czech Republic.

7cifhYgmcZ7\f]gh]Ubi6fcXUžBibc@aUcž8Uj]X'9"KY]bghY]bzUbX'h\Y'5aYf]VUbi9Wtbca]W5ggcV]Uh]cb"IgYX'k]h\idYfa]gg]cb"

Statistic	Observations ^a		Median ^b			Iean	Standard deviation		
Sample	All	Low	Medium	High	All	W/out top decile	All	W/out top decile	
Algeria	739	0.4	2.8	91	118	23	333	47	
Belarus	703	0.3	1.5	61	85	15	257	36	
Bolivia	647	0.3	2.0	91	102	23	283	49	
China	1,125	0.4	2.1	80	92	17	267	35	
Czech Republic	1,075	0.3	1.4	26	63	7	233	18	
Ecuador	753	0.3	1.5	56	76	13	243	30	
Latvia	872	0.2	1.1	9	52	3	239	8	
Lebanon	782	0.1	0.9	31	56	7	215	18	
Lithuania	811	0.3	1.2	24	65	6	235	16	
Oman	629	0.3	1.2	25	209	7	3,536	21	
Paraguay	511	0.4	3.0	153	132	67	315	169	
Russia	1,029	0.5	1.8	33	48	8	198	18	
Saudi Arabia	1,036	0.4	1.7	50	71	11	232	25	
Taiwan	891	0.1	1.4	131	90	20	241	43	
Ukraine	730	0.4	2.1	78	86	16	254	34	
Median	782	0.3	1.6	54	85	13	243	30	

TABLE 3A—INVERSE EXPORT SUPPLY ELASTICITY STATISTICS

^aNumber of observations for which elasticities and tariffs are available. The tariff availability did not bind except for Ukraine, where it was not available for about 130 HS4 goods for which elasticities were computed. ^bThe median over the "low" sample corresponds to the median over the bottom tercile of inverse elasticities. Medium and high correspond to the second and third terciles.

7ci fhYgmcZ7\f]gh]Ub 6fcXUz Bi bc @a Ucz 8Uj]X 9" K Y]bghY]bz UbX h\Y 5a Yf]WUb 9Wzbca]W5ggcV]Uh]cb" I gYX k]h\ dYfa]gg]cb"

	Log inverse export supply								
Dependent variable: Statistic	Beta	Standard error	R^2	Number of observations					
Algeria	0.80	(0.07)	0.13	739					
Belarus	0.80	(0.07)	0.14	703					
Bolivia	0.82	(0.09)	0.13	647					
China	0.54	(0.06)	0.11	1,125					
Czech Republic	0.61	(0.05)	0.12	1,075					
Ecuador	0.73	(0.08)	0.12	753					
Latvia	0.57	(0.07)	0.09	872					
Lebanon	0.71	(0.08)	0.11	782					
Lithuania	0.70	(0.07)	0.13	811					
Oman	0.39	(0.08)	0.04	629					
Paraguay	0.94	(0.11)	0.14	511					
Russia	0.53	(0.05)	0.11	1,029					
Saudi Arabia	0.48	(0.06)	0.08	1,036					
Taiwan	0.31	(0.08)	0.02	891					
Ukraine	0.83	(0.07)	0.17	730					
Median	0.70	(0.07)	0.12	782					

TABLE 4—CORRELATION OF INVERSE EXPORT SUPPLY ELASTICITIES ACROSS COUNTRIES

Note: Univariate regression of log inverse export supply elasticities in each country on the average of the log inverse elasticities in that good for the remaining 14 countries.

TABLE 6—INVERSE EXPORT SUPPLY ELASTICITIES, GDP, REMOTENESS, AND IMPORT SHARES

Dependent variable	Log	inverse export supply	
Log GDP	0.17 (0.04)	0.18 (0.03)	
Log remoteness		0.40 (0.15)	
Share of world HS4 imports			7.19 (1.48)
Observations R^2 R^2 within	12,343 0.26 0.01	12,343 0.26 0.02	12,343 0.25 0.00

 $\overline{Notes:}$ All regressions include four-digit HS fixed effects (1,201 categories). Robust standard errors in parentheses. In the log GDP regressions, standard errors are clustered by country. GDP is for 1996. Remoteness for country *i* is defined as $1/(\sum_{j}$ GDP/distance_{*ij*}). The share of world imports is calculated in 2000.

7cifhYgmcZ7\f]gh]Ub`6fcXUzBibc`@]aUczBUj]X'9"KY]bghY]bzUbX'h\Y`5aYf]WUb`9Wzbca]W5ggcWJUh]cb"IgYX'k]h\`dYfa]gg]cb"

FIGURE 3. MEDIAN TARIFFS AND MARKET POWER ACROSS COUNTRIES

TABLE 7— TARIFFS AND MARKET POWER ACROSS GOODS (WITHIN COUNTRIES): OLS AND TOBET ESTIMATES

Dependent variable Average tariff at four-digit HS (%)									
Fixed effects		Country			C	ountry a	nd industr	ry	
Estimation method	OLS	OLS	OLS	OLS	OLS	OLS	Tobit	OLS ^a	OLS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Inverse exp. elast.	0.0003			0.0004					
Mid and high inv exp elast		1.24 (0.25)			1.46 (0.24)			1.86 (0.31)	
Log(l/export elasticity)			0.12 (0.04)			0.17 (0.04)	0.17 (0.05)		
(Inv. exp. elast) × (1 - med hi)								(0.31)	
(inv. exp. etast) × med ni Mid inv. enn. elast								(0.0001)	1.66
High inv. exp. elast.									(0.28) 1.37
Algeria	23.8	23.0	23.6	24.6	23.6	24.3	24.3	23.1	(0.28) 23.6
Belarus	(0.64) 12.3	(0.65) 11.5	(0.64) 12.2	(0.95) 12.6	(0.96) 11.6	(0.95) 12.5	(0.93) 12.4	(0.97) 11.3	(0.96) 11.7
Bolivia	(0.29) 9.8	(0.33) 9.0	(0.29) 9.7	(0.76) 10.1	(0.78)	(0.76) 10.0	(0.94) 10.0	(0.79) 8.8	(0.78) 9.2
China	(0.03) 37.8 (0.77)	(0.17) 37.0 (0.70)	(0.06) 37.7 (0.77)	(0.73) 38.2	(0./5) 37.2	(0.73) 38.0	(0.95) 37.9	(0.77) 36.6 (1.02)	(0.75) 37.2
Czech Republic	9.5	8.7	9.4	9.7	8.7	9.6	8.8	8.3	(1.01) 8.7 (0.86)
Ecuador	9.8	9.0	9.7	10.3	9.4	10.2	10.1	9.0	9.4 (0.74)
Latvia	7.3	6.4	7.2	7.3	6.3	7.2	6.9	6.0	6.3
Lebanon	17.1	16.2	17.0	17.1	16.1	17.0	17.0	15.9	16.1
Lithuania	3.6	2.8	3.6	3.6	2.6	3.5	-6.0	2.3	2.6
Oman	5.6 (0.34)	4.9 (0.37)	5.6 (0.34)	5.7	4.8	5.6	4.9 (0.94)	4.4 (0.79)	4.8 (0.79)
Paraguay	16.0 (0.49)	15.3 (0.52)	15.9 (0.50)	16.3 (0.84)	15.4 (0.85)	16.1 (0.84)	15.9 (0.99)	14.9 (0.86)	15.4 (0.85)
Russia	10.6 (0.34)	9.8 (0.38)	10.5 (0.34)	10.8 (0.77)	9.9 (0.79)	10.7 (0.77)	10.0 (0.89)	9.4 (0.82)	9.9 (0.79)
Saudi Arabia	12.1 (0.08)	11.3 (0.18)	12.0 (0.09)	12.4 (0.71)	11.4 (0.74)	12.2 (0.72)	12.1 (0.89)	10.9 (0.76)	11.4 (0.74)
Taiwan	9.7 (0.28)	8.9 (0.33)	9.6 (0.28)	10.3 (0.74)	9.3 (0.76)	10.1 (0.75)	9.7 (0.91)	9.0 (0.77)	9.3 (0.76)
Ukraine	7.4 (0.28)	6.6 (0.33)	7.2 (0.29)	8.1 (0.74)	7.1 (0.76)	7.9 (0.74)	6.8 (0.93)	6.6 (0.78)	7.1 (0.76)
Observations	12,333	12,333	12,333	12,333	12,333	12,333	12,333	12,333	12,333
Number of parameters Adj. R ²	16 0.61	16 0.61	16 0.61	36 0.66	35 0.66	36 0.66	35	38	36 0.66
Notes: Standard errors in parent according to Harmonized Stand ^a Optimal threshold regressic of inverse exp. elast. (from first t Accordingly, med hi equals one the dependence of the paramete	heses (all ard tariff in based of o ninety-n above the rs on the t	heterosk schedule n minim inth perc fifty-thir hreshold	edasticity um RSS f entile in i estimate	robust exc ound using ntervals of ile and zero is not of "f	ept Tobit) a grid se two). Opt o otherwi irst-order	. Industry arch over imal thre se. Bruce " asympt	50 points shold is fi E. Hanse otic impo	s defined b s of the di fty-third p en (2000) s rtance, so	y sectio stributio ercentile hows the

7cifhYgmcZ7\f]gh]Ub`6fcXUz`Bibc`@aUcz`8Uj]X`9"KY]bghY]bz`UbX`h\Y`5aYf]WUb`9Wcbca]W5ggcWJUh]cb"IgYX`k]h\`dYfa]gg]cb"

TABLE 8—TARIFFS AND MARKET	POWER ACROSS GOODS	(WITHIN COUNTRIES): IV	ESTIMATES

Dependent variable	le Average tariff at four-digit HS (%)								
Fixed effects Country				Coun	try and ind	lustry	Indus	stry by cou	intry
Estimation method	IV GMM (1)	IV GMM (2)	IV GMM (3)	IV GMM (4)	IV GMM (5)	IV GMM (6)	IV GMM (7)	IV GMM (8)	IV GMM (9)
Inverse exp. elast.	0.040 (0.027)			0.089 (0.055)			0.075 (0.028)		
Mid and high inv. exp. elast.	. ,	3.96 (0.76)			8.88 (1.18)		. ,	9.07 (1.08)	
Log(1/export elasticit	y)		0.75 (0.15)			1.71 (0.23)			1.73 (0.21)
Observations	12,258	12,258	12,258	12,258	12,258	12,258	12,258	12,258	12,258
No. of parameters 1st stage F	16 5	16 1649	16 1335	35 2	35 653	35 517	284 3	282 691	283 544

Notes: Standard errors in parentheses (heteroskedasticity robust). Industry dummies defined by section according to the Harmonized Standard tariff schedule.

TABLE 10— MARKET POWER VERSUS TARIFF REVENUE OR LOBBYING AS A SOURCE OF PROTECTION

Dependent variable	age tariff at four-digit HS (%)								
Fixed effects			Industry by country						
Estimation method	IV GM	4M							
Sample	Poole	d (all)	Poole	d (all)	Poole	ed (7)			
Theory	Marke	t power	Market p tariff r	ower and revenue	Market power and lobbying				
Mid and high inv. exp. elast.	9.07 (1.08)		9.04 (1.24)		10.20				
Mid and high inv. imp. elast.	(1.00)		-0.20 (2.08)		(1.7,7)				
Mid and hi inv. imp. pen/imp. elast.			. ,		6.28 (1.97)				
Log(1/export elasticity)		1.73 (0.21)		1.81 (0.23)		1.94 (0.38)			
Log(1/import elasticity)		(0.2.)		-0.90 (0.81)		(010.0)			
Log(inv. imp. pen/imp. elas.)				(0101)		1.59 (0.55)			
Observations No. of parameters First stage <i>F</i> (market power) First stage <i>F</i> (other)	12,258 282 691 na	12,258 283 544 na	12,258 283 370 102	12,258 284 312 144	5,178 132 171 131	5,178 133 129 188			

Notes: Standard errors in parentheses (heteroskedasticity robust). Industry dummies defined by section according to the Harmonized Standard tariff schedule. The countries with available data for the lobbying specifications are Bolivia, China, Ecuador, Latvia, Lithuania, Taiwan, and Ukraine. These data are not available for mining and agricultural products.

7cifhYgmcZ7\f]gh]Ub`6fcXUz`Bibc`@aUcz`8Uj]X`9"`KY]bghY]bz`UbX`h\Y`5aYf]WUb`9Wcbca]W5ggcWJUh]cb"`IgYX`k]h\`dYfa]gg]cb"

Panel A: Nontariff barriers								
Theory Fixed effects Estimation method		Market Indu IV T	<i>power</i> stry obit		Mar	<i>ket power</i> Indu IV T	<i>and lobby</i> Istry obit ^b	ing
Dependent variable	Covera (HS	ge ratio 54) ^a	Advalore (HS4	m equiv. , %)	Coverage ratio (HS4)		Advalorem equiv (HS4, %)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Mid and high inv. exp. elast.	0.90 (0.31)		38.8 (15.73)		4.93 (1.52)		70.8 (21.99)	
Mid and hi inv. imp. pen./imp. elast	(010-1)		()		-0.08 (0.86)		3.99 (13.14)	
Log(1/export elasticity)		0.22 (0.08)		9.71 (4.00)		1.16 (0.39)		16.0 (5.47)
Log(inv. imp. pen./imp. elas.)						0.19 (0.34)		4.74 (4.94)
Observations ^c	804	804	804	804	708	708	708	708
Number of parameters	17	17	17	17	17	17	17	17
First stage z-stat (market power)	7.1	6.6	7.1	6.6	6.2	5.3	6.2	5.3
First stage z-stat (other)	na	na	na	na	10.1	11.4	10.1	11.4

Theory Fixed effects Estimation method	Market power Industry IV Tobit				Market power and lobbying Industry IV Tobit ^b				
Dependent variable	Non-V (HS4	WTO 4, %)	WT (HS4	ГО , %)	Non- (HS-	WTO 4, %)	W (HS4	ГО 4, %)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Mid and high inv. exp. elast.	21.2 (5.53)		1.52 (1.18)		26.9 (8.05)		1.89 (1.58)		
Mid and hi inv. imp. pen./imp. elast					10.8 (4.91)		-0.63 (0.96)		
Log(1/export elasticity)		5.07 (1.36)		0.36 (0.28)	(1.5.1)	5.58	(0.5 0)	0.45	
Log(inv. imp. pen./imp. elas.)		(1.50)		(0.20)		4.76 (1.69)		-0.18 (0.34)	
Observations ^c	870	870	869	869	775	775	774	774	
Number of parameters	20	20	20	20	21	21	21	21	
First stage z-stat (market power)	7.3	7.1	7.3	7.1	6.0	5.3	6.0	5.3	
First stage z-stat (other)	na	na	na	na	10.0	11.6	10.0	11.6	
Mean Mid-hi inv. exp. elast. /mean (%)	30.6 69	30.6	3.4 45	3.4	33.0 81	33.0	3.7 51	3.7	
Elasticity (at mean)		0.17		0.11	0.	0.17		0.12	

7ci fhYgmcZ7\f]gh]Ub'6fcXUz'Bi bc'@]a Ucz'BUj]X'9"K Y]bghY]bz'UbX'h\Y'5a Yf]WUb'9Wzbca]W5ggcVJUh]cb"I gYX'k]h\ dYfa]gg]cb"

1.2 Bagwell and Staiger (AER, 2011)

- BS (2011) look at countries who joined the WTO/GATT, and examine how their tariffs *changed* in the process.
- Using similar logic to that seen above, they show that if governments are benevolent then (where 'BR' stands for 'best response'):

$$\tau^{BR} - \tau^{WTO} = \omega^{*BR} \tag{6}$$

• And if governments have political economy motives this generalizes to

$$\tau^{BR} - \tau^{WTO} = \eta^{BR} \equiv \sigma^{BR} \omega^{*BR} m^{BR} \tag{7}$$

• This can be extended to allow for the possibility that WTO negotiations do not preserve perfect reciprocity (i.e. that $p^{w,BR} \neq p^{w,WTO}$). Letting $r \equiv p^{w,WTO}/p^{w,BR}$ we have (where $\phi_1 = 0$ if r = 1):

$$\tau^{WTO} = \phi_0 + \phi_1 \tau^{BR} + \phi_2 \eta^{BR} \tag{8}$$

• This forms their estimating equation (with $\phi_1 > 0$ and $\phi_2 < 0$ expected). But for many countries they don't observe η so instead appeal to linear demand/supply case where η is proportional to m. MIT OpenCourseWare http://ocw.mit.edu

14.581International Economics I Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.