14.581 International Trade — Lecture 21: Economic Geography (II)—

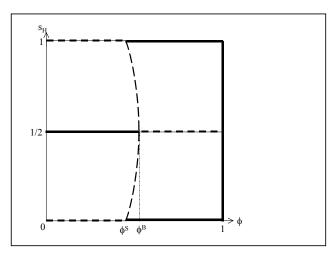
- Stylized facts about agglomeration of economic activity
- Itesting sources of agglomeration:
 - Direct estimation
 - Stimation from spatial equilibrium
 - Stimation via tests for multiple equilibria

- Stylized facts about agglomeration of economic activity
- Itesting sources of agglomeration:
 - Direct estimation
 - e Estimation from spatial equilibrium
 - **③** Estimation via tests for multiple equilibria

- This is an extremely influential paper on a theory of economic geography (8,500 cites).
- It formalizes, in an extremely simple and clear manner, one particular form of agglomeration externality: that which arises with the combination of IRTS in production and trade costs.
- At a more prosaic level, this is just Krugman (1980) with the added assumption of free labor mobility.

Krugman (JPE, 1991): Aside on HME Empirics

- Core of Krugman (1980) and the reason for agglomeration in Krugman (1991) is the 'home market effect'.
- We should therefore ask what independent evidence there is for the HME (regardless of agglomeration externalities). This is also of interest in its own right as the HME has been highlighted as the one testable empirical prediction that differs strongly across neoclassical and IRTS-based models of trade.
- On this, see:
 - Davis and Weinstein (JIE, 2003)
 - Hanson and Xiang (AER, 2004)
 - Behrens et al (2009)
 - Head and Ries (2001)
 - Feenstra, Markusen and Rose (2004)
- But the punchline is that there is no one convincing test. The reason is that it is (of course) challenging to come up with a plausible source of exogenous demand shocks (which lie at the heart of the HME).


Krugman (JPE, 1991): Basic Setup

- 2 regions
- 2 sectors:
 - 'Agriculture': CRTS, freely traded, workers immobile geographically
 - 'Manufacturing': IRTS (Dixit-Stiglitz with CES preferences), iceberg trade costs *τ*, mobile workers
 - Cobb-Douglas preferences between A and M sectors
- Basic logic can have other interpretations:
 - Krugman and Venables (QJE, 1995): immobile factors but input-output linkages between two Dixit-Stiglitz sectors
 - Baldwin (1999): endogenous factor accumulation rather than factor mobility
 - And others; see Robert-Nicoud (2005) or a synthesis and simplification to the 'core' of these models.
- Hard to extend beyond 2 regions, but see:
 - Krugman and Venables (1995, wp) for a continuous space version (on a circle)
 - Fujita, Krugman and Venables (1999 book) for a wealthy discussion of extensions to the basic logic (and more)

Krugman (1991): Key Result

 s_H is the share of mobile workers in one location (call it H) relative to the other location; $\phi \equiv \tau^{1-\sigma}$ is index of freeness of trade

Figure 1: The Tomahawk Diagram

Davis and Weinstein (AER, 2002)

- DW (2002) ask whether regions/cities' population levels respond to one-off shocks
- The application is to WWII bombing in Japan
- Their findings are surprising and have been replicated in many other settings:
 - Germany (WWII): Brakman, Garretsen and Schramm (2004)
 - Vietnam (Vietnam war): Miguel and Roland (2011)
 - ...
- Davis and Weinstein (J Reg. Sci., 2008) extend the analysis in DW (2002) to the case of the fate of industry-locations. This is doubly interesting as it is plausible that industrial activity is mobile across space in ways that people are not.

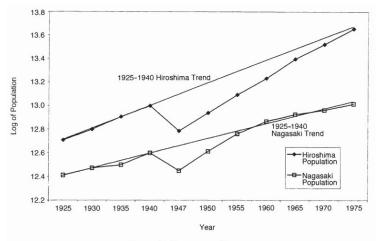
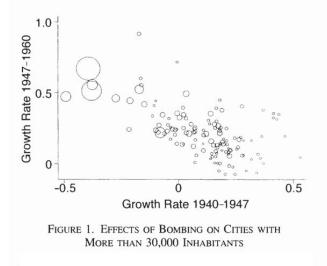
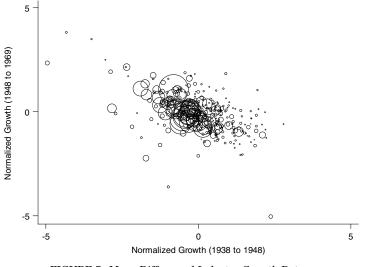



FIGURE 2. POPULATION GROWTH

Davis, Donald R., and David E. Weinstein. "Bones, Bombs, and Break Points: The Geography of Economic Activity." Sa YT/Wb 9Webca JWFY JYk 92 no. 5 (2002): 1269–89. Courtesv of American Economic Association. Used with nermission.

Davis, Donald R., and David E. Weinstein. "Bones, Bombs, and Break Points: The Geography of Economic Activity." Sa YT/Mb 9Wbca /MFY / J/k 92, no. 5 (2002): 1269-89. Courtesy of American Economic Association. Used with permission.

Evolution of Japanese manufacturing during World War II (Quantum Indices from Japanese Economic Statistics)								
Industry	1941	1946	Change					
Chemicals	252.9	36.9	-85%					
Lumber and Wood	187.0	91.6	-51%					
Machinery	639.2	38.0	-94%					
Manufacturing	206.2	27.4	-87%					
Metals	270.2	20.5	-92%					
Printing and Publishing	133.5	32.7	-76%					
Processed Food	89.9	54.2	-40%					
Stone, Clay, Glass	124.6	29.4	-76%					
Textiles and Apparel	79.4	13.5	-83%					

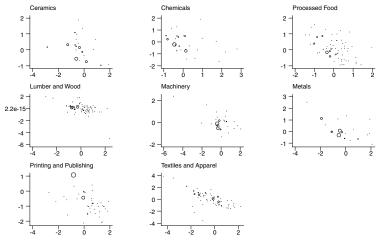

Image by MIT OpenCourseWare.

Correlation of Growth Rates of Industries Within Cities 1938 to 1948									
	Metals	Chemicals	Textiles	Food	Printing	Lumber	Ceramics		
Machinery	0.60	0.30	0.12	0.32	0.11	0.23	0.13		
Metals	-	0.36	0.35	0.65	0.30	0.35	0.53		
Chemicals	-	-	0.25	0.31	0.04	0.21	0.36		
Textiles	-	-	-	0.49	0.29	0.25	0.38		
Food	-	-	-	-	0.35	0.25	0.50		
Printing	-	-	-	-	-	0.41	0.41		
Lumber	-	-	-	-	-	-	0.23		

Image by MIT OpenCourseWare.

Inflation Adjusted Percent Decline in Assets Between 1935 and 1945						
	Decline					
Bridges	3.5					
Railroads and tramways	7.0					
Harbors and canals	7.5					
Electric power generation facilities	10.8					
Telecommunication facilities	14.8					
Water and sewerage works	16.8					
Cars	21.9					
Buildings	24.6					
Industrial machinery and equipment	34.3					
Ships	80.6					
Total	25.4					

Image by MIT OpenCourseWare.


FIGURE 7: Mean-Differenced Industry Growth Rates.

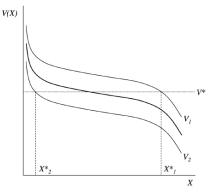
Davis, Donald R., and David E. Weinstein. "Bones, Bombs, and Break Points: The Geography of Economic Activity." American Economic Review 92, no. 5 (2002): 1269–1289. Courtesy of American Economic Association. Used with permission.

14.581

Economic Geography I)

Spring 2013 14 / 25

Normalized Growth (1938 to 1948)


FIGURE 8: Prewar vs Postwar Growth Rate.

Davis, Donald R., and David E. Weinstein. "Bones, Bombs, and Break Points: The Geography of Economic Activity." American Economic Review 92, no. 5 (2002): 1269–1289. Courtesy of American Economic Association. Used with permission.

- BL (2012) look for an even that removed a location's natural (i.e. exogenous) productivity advantage/amenity.
- If there are no agglomeration externalities then this location will suffer from this removal.
- But if there are agglomeration externalities then this location might not suffer much at all. Its future success is assured through the logic of multiple equilibria. (This is typically referred to as 'path dependence'.)

- What is the natural advantage that got removed from some locations?
- BL (2012) look at 'portage sites': locations where portage (i.e. the trans-shipment of goods from one type of boat to another type of boat) took place before the construction of canals/railroads. Prior to canals/railroads portage was extremely labor-intensive so portage sites were a source of excess labor demand.
- What is an exogenous source for a portage site? BL (2012) use the 'fall line', a geological feature indicating the point at which (in the US) navigable rivers leaving the ocean would first become unnavigable

Courtesy of Hoyt Bleakley and Jeffrey Lin. Used with permission.

Bleakley and Lin (2012): Theory

Panel B: Differences in density with strong increasing returns

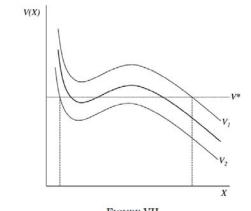
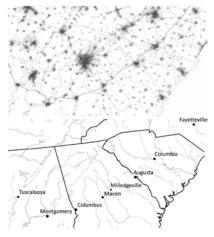


FIGURE VII Equilibrium Density in a Model with Natural Advantages and Increasing Returns

Courtesy of Hoyt Bleakley and Jeffrey Lin. Used with permission.

Bleakley and Lin (2010): The Fall Line


FIGURE A.1 The Density Near Fall-Line/River Intersections

This map shows the contemporary distribution of economic activity across the southeastern United States measured by the 2003 nighttime lights layer. For information on sources, see notes for Figures II and IV.

Courtesy of Jeffrey Lin and Hoyt Bleakley. Used with permission.

14.581

Bleakley and Lin (2012): The Fall Line

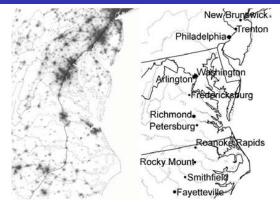


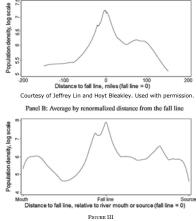
FIGURE II Fall-Line Cities from Alabama to North Carolina

The map in the upper panel shows the contemporary distribution of economic activity across the southeastern United States, measured by the 2003 nighttime lights layer from NationalAtlas.gov. The nighttime lights are used to present a nearly continuous measure of presented value context of the south frequency. The full line (solid) is digitized from *Physical Divisions of the United States*, produced by the U.S. Ceological Survey. Major virres (dashed gray) are from NationalAtlas.gov, hased on data produced by the United States (Geological Survey. Outenpowery full-line cities are labeled in the lower panel.

Courtesy of Hoyt Bleakley and Jeffrey Lin. Used with permission.

Bleakley and Lin (2012): The Fall Line

FIGURE IV


Fall-Line Cities from North Carolina to New Jersey

The map in the left panel shows the contemporary distribution of economic activity across the southeastern United States measured by the 2003 nighttime lights layer from NationalAtlas.gov. The nighttime lights are used to present a nearly continuous measure of present-day economic activity at a high spatial frequency. The fall line (solid) is digitized from *Physical Divisions of the United States*, produced by the U.S. Geological Survey. Major rivers (dashed gray) are from NationalAtlas.gov, based on data produced by the U.S. Geological Survey. Contemporary fall-line cities are labeled in the right panel.

Courtesy of Hoyt Bleakley and Jeffrey Lin. Used with permission.

Bleakley and Lin (2012): Results

Population Density in 2000 along Fall-Line Rivers

These graphs display contemporary population density along full-line rivers; We select census 2000 tracts whose centroid is lew within 50 miles along full-line rivers; the horizontal axis measures distance to the full line, where the full line is normalized to zero, and the Atlanti Coean lise to the left. In Panel A, these distances are calculated in miles. In Panel B, these distances are normalized for each river relative to the river mouth or the river source. The raw population data are then smoothed via Stata's lowess procedure, with bandwidths of 0.3 (Panel A) or 0.1 (Panel B).

Courtesy of Hoyt Bleakley and Jeffrey Lin. Used with permission.

Bleakley and Lin (2012): Results

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Inompressive		TABLE II	n any Donry	mon Drava			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	UPSTREAM WAT							
$\begin{tabular}{ c c c c c } \hline State fixed from various effects in various effects $								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				Distance				
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Specifications:				3			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel A: Census Tracts	, 2000, N =	21452					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Portage site times	0.467	0.467	0.500	0.496	0.452		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	upstream watershed	$(0.175)^{**}$	$(0.164)^{***}$	$(0.114)^{***}$	$(0.173)^{***}$	$(0.177)^{**}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Binary indicator	1.096	1.000	1.111	1.099	1.056		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	for portage site	$(0.348)^{***}$	$(0.326)^{***}$	$(0.219)^{***}$	(0.350)***	(0.364)***		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Portage site times				-1.812			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	horsepower/100k				(1.235)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Portage site times					0.110		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I(horsepower > 2000))				(0.311)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Panel B: Nighttime Lig	hts, 1996–9	7, $N = 65000$)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Portage site times	0.418	0.352	0.456	0.415	0.393		
	upstream watershed	$(0.115)^{***}$	$(0.102)^{***}$	$(0.113)^{***}$	(0.116)***	(0.111)***		
	Binary indicator	0.463	0.424	0.421	0.462	0.368		
$ \begin{array}{ccc} horsepower/100k & (0.433) \\ Portage site times & 0.318 \\ Ithorsepower > 2000) & (0.232) \\ \\ Partel C: Counties, 2000, N = 3480 \\ Portage site times & 0.443 & 0.372 & 0.423 & 0.462 & 0.328 \\ upstream watershed & (0.209)^{**} & (0.185)^{**} & (0.207)^{**} & (0.215)^{**} & (0.154)^{**} \\ Binary indicator for & 0.890 & 0.834 & 0.742 & 0.889 & 0.587 \\ portage site times & (0.211)^{***} & (0.194)^{***} & (0.232)^{***} & (0.211)^{***} & (0.211)^{***} \\ Portage site times & -0.460 \\ horsepower/100k & (0.771) \\ Portage site times & 0.991 \\ \end{array} $	for portage site	$(0.116)^{***}$	$(0.111)^{***}$	$(0.121)^{***}$	(0.116)***	$(0.132)^{***}$		
	Portage site times				0.098			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	horsepower/100k				(0.433)			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Portage site times					0.318		
	I(horsepower > 2000)				(0.232)		
	Panel C: Counties, 200	N = 3480						
			0.372	0.423	0.462	0.328		
Binary indicator for 0.890 0.834 0.742 0.889 0.587 portage site (0.211)*** (0.194)**** (0.232)*** (0.211)*** (0.210)*** Portage site times -0.640 -0.640 -0.640 horsepower/100k (0.771) -0.690 9.0742 0.991 -0.991		(0.209)**	$(0.185)^{**}$	$(0.207)^{**}$	(0.215)**	$(0.154)^{**}$		
portage site (0.211)*** (0.194)*** (0.232)*** (0.211)**** (0.211)**** (0.			0.834	0.742	0.889	0.587		
Portage site times -0.460 horsepower/100k (0.771) Portage site times 0.991		$(0.211)^{***}$	$(0.194)^{***}$	$(0.232)^{***}$	(0.211)***	(0.210)***		
horsepower/100k (0.771) Portage site times 0.991								
Portage site times 0.991								
						0.991		
)				(0.442)		

TADT D T

Courtesy of Hoyt Bleakley and Jeffrey Lin. Used with permission.

Bleakley and Lin (2012): Results

		PROXI	MITY TO H	STORICAL	PORTAGE	SITE AND I	IISTORICA	L FACTORS			
		(1) Railroad	(2)	(3)	(4)	(5) College	(6)	(7)	(8) Industrial	(9) Industrial	(10)
		network	Distance	Literate	Literacy	teachers	Manuf. /	Non-agr.	diversity	diversity	Water power
	Baseline	length, 1850	to RR hub, 1850	white men, 1850	rate white men, 1850	per capita, 1850	agric., 1880	share, 1880	(1-digit), 1880	(3-digit), 1880	in use 1885, dummy
Explanatory variables: Panel A. Portage and his	storical fact	ors									
Dummy for proximity to portage site		$1.451 \\ (0.304)^{***}$	-0.656 (0.254)**	$0.557 \\ (0.222)^{**}$	$\begin{array}{c} 0.013 \\ (0.014) \end{array}$	0.240 (0.179)	$\begin{array}{c} 0.065 \ (0.024)^{***} \end{array}$	$\begin{array}{c} 0.073 \ (0.025)^{***} \end{array}$	0.143 (0.078)*	0.927 (0.339)***	$0.164 \\ (0.053)^{***}$
Panel B. Portage and his	storical fact	ors, conditio	ned on hist	orical densi	ty						
Dummy for proximity to portage site		$1.023 \\ (0.297)^{***}$	-0.451 (0.270)	$\begin{array}{c} 0.021 \\ (0.035) \end{array}$	-0.003 (0.014)	$\begin{array}{c} 0.213 \\ (0.162) \end{array}$	$\begin{array}{c} 0.022 \\ (0.019) \end{array}$	0.019 (0.019)	$\begin{array}{c} 0.033 \\ (0.074) \end{array}$	$\begin{array}{c} -0.091 \\ (0.262) \end{array}$	0.169 (0.054)***
Panel C. Portage and con	ntemporary	density, con	ditioned on	historical f	actors						
Dummy for proximity to portage site	0.912 (0.236)***	0.774 (0.236)***	$\begin{array}{c} 0.751 \ (0.258)^{***} \end{array}$	0.729 (0.187)***	$\begin{array}{c} 0.940 \\ (0.237)^{***} \end{array}$	0.883 (0.229)***	$\begin{array}{c} 0.833 \\ (0.227)^{***} \end{array}$	0.784 (0.222)***	$\begin{array}{c} 0.847 \\ (0.251)^{***} \end{array}$	$\begin{array}{c} 0.691 \\ (0.221)^{***} \end{array}$	0.872 (0.233)***
Historical factor		$0.118 \\ (0.024)^{***}$	-0.098 (0.022)***	$0.439 \\ (0.069)^{***}$	0.666 (0.389)*	$_{(0.164)^{***}}^{1.349}$	$\begin{array}{c} 1.989 \\ (0.165)^{***} \end{array}$	$2.390 \ (0.315)^{***}$	0.838 (0.055)***	$\begin{array}{c} 0.310 \\ (0.015)^{***} \end{array}$	$\begin{array}{c} 0.331 \ (0.152)^{**} \end{array}$

TABLE III PROXIMITY TO HISTORICAL PORTAGE SITE AND HISTORICAL FACTORS

Notes: This table displays estimates of equation 1, with the below noted modifications. In Panels A and B, the outcome variables are historical factor densities, as noted in the column backings: The main explanatory variable is a dummy for proximity to a historical paral and and a historical provide and the historical factor density. In Panel C, the outcome variable is 2000 population density, measured in natural logarithms, and the explanatory variables are portage proximity and the historical factor density. In Panel C, the outcome heading. Each panel/column presents estimates from a separate regression. The sample consists of all U.S. counties, in each historical year, that are within the watersheds of rivers that cross the fall line. The estimator used is OLS, with standard errors clustersheds. The basic specification includes a polynomial in latitude and longitude, a set of fixed effects by the watershed of each river that crosses the fall line, and dummies for proximity to the fall line and to a river. Reporting of additional coefficients is suppressed. Data sources and additional variable and sample definitions are found in the text and appendixes.

Courtesy of Hoyt Bleakley and Jeffrey Lin. Used with permission.

MIT OpenCourseWare http://ocw.mit.edu

14.581 International Economics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.